� EMBED Word.Picture.6 ���

RECOMMENDATION FOR SPACE�DATA SYSTEM STANDARDS

THE DATA DESCRIPTION LANGUAGE EAST�SPECIFICATION�(CCSD0010)��

CCSDS 644.0-B-1

BLUE BOOK

May 1997

� EMBED Word.Picture.6 ���

�AUTHORITY

������Issue:�Blue Book, Issue 1����Date:�May 1997����Location:�São José dos Campos

São Paulo, Brazil�����

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS Recommendations is detailed in the Procedures Manual for the Consultative Committee for Space Data Systems (reference � REF Ref_ProcMan * MERGEFORMAT �[E1]�), and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the address below.

This Recommendation is published and maintained by:

CCSDS Secretariat

Program Integration Division (Code MG)

National Aeronautics and Space Administration

Washington, DC 20546, USA

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of member space Agencies. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommendations and are not considered binding on any Agency.

This Recommendation is issued by, and represents the consensus of, the CCSDS Plenary body. Agency endorsement of this Recommendation is entirely voluntary. Endorsement, however, indicates the following understandings:

o	Whenever an Agency establishes a CCSDS-related standard, this standard will be in accord with the relevant Recommendation. Establishing such a standard does not preclude other provisions which an Agency may develop.

o	Whenever an Agency establishes a CCSDS-related standard, the Agency will provide other CCSDS member Agencies with the following information:

--	The standard itself.

--	The anticipated date of initial operational capability.

--	The anticipated duration of operational service.

o	Specific service arrangements shall be made via memoranda of agreement. Neither this Recommendation nor any ensuing standard is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this Recommendation will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or, (3) be retired or canceled.

In those instances when a new version of a Recommendation is issued, existing CCSDS-related Agency standards and implementations are not negated or deemed to be non-CCSDS compatible. It is the responsibility of each Agency to determine when such standards or implementations are to be modified. Each Agency is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommendation.

FOREWORD

This Recommendation is a technical Recommendation for the standardization of a language to be used for providing syntactic and in some degree semantic information about data interchange using Standard Formatted Data Units (SFDUs).

This Recommendation provides the syntax specification of the language EAST which is a subset of the Ada language.

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Recommendation is therefore subject to CCSDS document management and change control procedures which are defined in reference � REF Ref_ProcMan * MERGEFORMAT �[E1]�. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/ccsds/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were

Member Agencies

Ð	Agenzia Spaziale Italiana (ASI)/Italy.

Ð	British National Space Centre (BNSC)/United Kingdom.

Ð	Canadian Space Agency (CSA)/Canada.

Ð	Centre National d’Etudes Spatiales (CNES)/France.

Ð	Deutsche Forschungsanstalt fŸr Luft- und Raumfahrt e.V. (DLR)/Germany.

Ð	European Space Agency (ESA)/Europe.

Ð	Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

Ð	National Aeronautics and Space Administration (NASA)/USA.

Ð	National Space Development Agency of Japan (NASDA)/Japan.

Ð	Russian Space Agency (RSA)/Russian Federation.

Observer Agencies

Ð	Austrian Space Agency (ASA)/Austria.

Ð	Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

Ð	Centro Tecnico Aeroespacial (CTA)/Brazil.

Ð	Chinese Academy of Space Technology (CAST)/China.

Ð	Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

Ð	Communications Research Laboratory (CRL)/Japan.

Ð	Danish Space Research Institute (DSRI)/Denmark.

Ð	European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

Ð	European Telecommunications Satellite Organization (EUTELSAT)/Europe.

Ð	Federal Service of Scientific, Technical & Cultural Affairs (FSST&CA)/Belgium.

Ð	Hellenic National Space Committee (HNSC)/Greece.

Ð	Indian Space Research Organization (ISRO)/India.

Ð	Industry Canada/Communications Research Centre (CRC)/Canada.

Ð	Institute of Space and Astronautical Science (ISAS)/Japan.

Ð	Institute of Space Research (IKI)/Russian Federation.

Ð	KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

Ð	MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

Ð	Korea Aerospace Research Institute (KARI)/Korea.

Ð	Ministry of Communications (MOC)/Israel.

Ð	National Oceanic & Atmospheric Administration (NOAA)/USA.

Ð	National Space Program Office (NSPO)/Taipei.

Ð	Swedish Space Corporation (SSC)/Sweden.

Ð	United States Geological Survey (USGS)/USA.

�DOCUMENT CONTROL

Document�Title�Date�Status/Remarks��CCSDS 644.0-B-1�Recommendation for Space Data System Standards: The Data Description Language EAST Specification (CCSD0010)�May 1997�Original Issue ��

CONTENTS

Section	Page

� TOC \o "1-3" �1	INTRODUCTION	� GOTOBUTTON _Toc395689776 � PAGEREF _Toc395689776 �1-1��

1.1	PURPOSE AND SCOPE	� GOTOBUTTON _Toc395689777 � PAGEREF _Toc395689777 �1-1��

1.2	APPLICABILITY	� GOTOBUTTON _Toc395689778 � PAGEREF _Toc395689778 �1-1��

1.3	RATIONALE	� GOTOBUTTON _Toc395689779 � PAGEREF _Toc395689779 �1-1��

1.4	DOCUMENT STRUCTURE	� GOTOBUTTON _Toc395689780 � PAGEREF _Toc395689780 �1-2��

1.5	DEFINITIONS	� GOTOBUTTON _Toc395689781 � PAGEREF _Toc395689781 �1-2��

1.5.1	TERMS	� GOTOBUTTON _Toc395689782 � PAGEREF _Toc395689782 �1-2��

1.5.2	NOMENCLATURE	� GOTOBUTTON _Toc395689783 � PAGEREF _Toc395689783 �1-2��

1.5.3	CONVENTIONS	� GOTOBUTTON _Toc395689784 � PAGEREF _Toc395689784 �1-3��

1.6	REFERENCES	� GOTOBUTTON _Toc395689785 � PAGEREF _Toc395689785 �1-5��

2	OVERVIEW	� GOTOBUTTON _Toc395689786 � PAGEREF _Toc395689786 �2-1��

2.1	DESIGN AIMS	� GOTOBUTTON _Toc395689787 � PAGEREF _Toc395689787 �2-1��

2.2	STRUCTURE OF AN EAST DESCRIPTION	� GOTOBUTTON _Toc395689788 � PAGEREF _Toc395689788 �2-1��

2.3	LANGUAGE SUMMARY	� GOTOBUTTON _Toc395689789 � PAGEREF _Toc395689789 �2-2��

3	DEFINITION OF THE EAST LANGUAGE	� GOTOBUTTON _Toc395689790 � PAGEREF _Toc395689790 �3-1��

3.1	LEXICAL ELEMENTS	� GOTOBUTTON _Toc395689791 � PAGEREF _Toc395689791 �3-1��

3.1.1	SEPARATORS AND DELIMITERS	� GOTOBUTTON _Toc395689792 � PAGEREF _Toc395689792 �3-1��

3.1.2	COMMENTS	� GOTOBUTTON _Toc395689793 � PAGEREF _Toc395689793 �3-1��

3.1.3	IDENTIFIERS	� GOTOBUTTON _Toc395689794 � PAGEREF _Toc395689794 �3-2��

3.1.4	NUMERIC LITERALS	� GOTOBUTTON _Toc395689795 � PAGEREF _Toc395689795 �3-2��

3.2	LOGICAL DESCRIPTION	� GOTOBUTTON _Toc395689796 � PAGEREF _Toc395689796 �3-7��

3.2.1	TYPE DECLARATIONS	� GOTOBUTTON _Toc395689797 � PAGEREF _Toc395689797 �3-8��

3.2.2	SUBTYPE DECLARATIONS	� GOTOBUTTON _Toc395689798 � PAGEREF _Toc395689798 �3-23��

3.2.3	OBJECT DECLARATIONS	� GOTOBUTTON _Toc395689799 � PAGEREF _Toc395689799 �3-26��

3.2.4	REPRESENTATION CLAUSES	� GOTOBUTTON _Toc395689800 � PAGEREF _Toc395689800 �3-29��

3.3	PHYSICAL DESCRIPTION	� GOTOBUTTON _Toc395689801 � PAGEREF _Toc395689801 �3-40��

3.3.1	WAY OF STORING ARRAYS	� GOTOBUTTON _Toc395689802 � PAGEREF _Toc395689802 �3-41��

3.3.2	WAY OF STORING OCTETS/BITS	� GOTOBUTTON _Toc395689803 � PAGEREF _Toc395689803 �3-41��

3.3.3	REPRESENTATION OF SCALAR TYPES	� GOTOBUTTON _Toc395689804 � PAGEREF _Toc395689804 �3-43��

3.3.4	RELATIONSHIP BETWEEN THE REPRESENTATION OF SCALAR TYPES AND LOGICAL TYPES	� GOTOBUTTON _Toc395689805 � PAGEREF _Toc395689805 �3-54��

CONTENTS (continued)

Section	Page

3.3.5	TEMPLATE OF A PHYSICAL DESCRIPTION PART	� GOTOBUTTON _Toc395689806 � PAGEREF _Toc395689806 �3-56��

4	RESERVED KEYWORDS	� GOTOBUTTON _Toc395689807 � PAGEREF _Toc395689807 �4-1��

5	CONFORMANCE	� GOTOBUTTON _Toc395689808 � PAGEREF _Toc395689808 �5-1��

�� TOC \f X * MERGEFORMAT �

ANNEX A	ACRONYMS AND GLOSSARY	A-� GOTOBUTTON _Toc395599271 � PAGEREF _Toc395599271 �1��

ANNEX B	CHARACTER DEFINITION	B-� GOTOBUTTON _Toc395599280 � PAGEREF _Toc395599280 �1��

ANNEX C	EAST FORMAL SYNTAX SPECIFICATION	C-� GOTOBUTTON _Toc395599281 � PAGEREF _Toc395599281 �1��

ANNEX D	MAIN DIFFERENCES BETWEEN ADA AND EAST	D-� GOTOBUTTON _Toc395599282 � PAGEREF _Toc395599282 �1��

ANNEX E	INFORMATIVE REFERENCES	E-� GOTOBUTTON _Toc395599283 � PAGEREF _Toc395599283 �1��

INDEX	I-� GOTOBUTTON _Toc395599284 � PAGEREF _Toc395599284 �1��

�

Figure

� TOC \f G * MERGEFORMAT * MERGEFORMAT �1-1	Example of Syntax Diagram	� GOTOBUTTON _Toc395597402 � PAGEREF _Toc395597402 �1-3��

3-1	Identifier Definition Diagram	� GOTOBUTTON _Toc395597403 � PAGEREF _Toc395597403 �3-2��

3-2	Decimal Literal Definition Diagram	� GOTOBUTTON _Toc395597404 � PAGEREF _Toc395597404 �3-2��

3-3	Integer Decimal Literal Definition Diagram	� GOTOBUTTON _Toc395597405 � PAGEREF _Toc395597405 �3-3��

3-4	Real Decimal Literal Definition Diagram	� GOTOBUTTON _Toc395597406 � PAGEREF _Toc395597406 �3-3��

3-5	Integer Definition Diagram	� GOTOBUTTON _Toc395597407 � PAGEREF _Toc395597407 �3-3��

3-6	Exponent Definition Diagram	� GOTOBUTTON _Toc395597408 � PAGEREF _Toc395597408 �3-3��

3-7	Based Literal Definition Diagram	� GOTOBUTTON _Toc395597409 � PAGEREF _Toc395597409 �3-4��

3-8	Integer Based Literal Definition Diagram	� GOTOBUTTON _Toc395597410 � PAGEREF _Toc395597410 �3-4��

3-9	Real Based Literal Definition Diagram	� GOTOBUTTON _Toc395597411 � PAGEREF _Toc395597411 �3-5��

3-10	Based Integer Definition Diagram	� GOTOBUTTON _Toc395597412 � PAGEREF _Toc395597412 �3-5��

3-11	Integer Literal Definition Diagram	� GOTOBUTTON _Toc395597413 � PAGEREF _Toc395597413 �3-6��

3-12	Real Literal Definition Diagram	� GOTOBUTTON _Toc395597414 � PAGEREF _Toc395597414 �3-6��

3-13	Logical Part Structure	� GOTOBUTTON _Toc395597415 � PAGEREF _Toc395597415 �3-7��

3-14	Enumeration Type Specification Diagram	� GOTOBUTTON _Toc395597416 � PAGEREF _Toc395597416 �3-8��

3-15	Enumeration Literal Definition Diagram	� GOTOBUTTON _Toc395597417 � PAGEREF _Toc395597417 �3-9��

3-16	Integer Type Specification Diagram	� GOTOBUTTON _Toc395597418 � PAGEREF _Toc395597418 �3-9��

3-17	Real Type Specification Diagram	� GOTOBUTTON _Toc395597419 � PAGEREF _Toc395597419 �3-10��

3-18	Array Type Specification Diagram	� GOTOBUTTON _Toc395597420 � PAGEREF _Toc395597420 �3-12��

3-19	Index Specification Diagram	� GOTOBUTTON _Toc395597421 � PAGEREF _Toc395597421 �3-12��

3-20	Record Type Specification Diagram	� GOTOBUTTON _Toc395597422 � PAGEREF _Toc395597422 �3-14��

3-21	Component Declaration Diagram	� GOTOBUTTON _Toc395597423 � PAGEREF _Toc395597423 �3-14��

3-22	Index Constraint Diagram	� GOTOBUTTON _Toc395597424 � PAGEREF _Toc395597424 �3-15��

3-23	Discriminant Specification Diagram	� GOTOBUTTON _Toc395597425 � PAGEREF _Toc395597425 �3-16��

3-24	Variant Part Specification Diagram	� GOTOBUTTON _Toc395597426 � PAGEREF _Toc395597426 �3-16��

3-25	Discriminants in a Packet Format	� GOTOBUTTON _Toc395597427 � PAGEREF _Toc395597427 �3-19��

CONTENTS (continued)

Figure	Page

3-26	Type Summary	� GOTOBUTTON _Toc395597428 � PAGEREF _Toc395597428 �3-22��

3-27	Subtype Declaration Diagram	� GOTOBUTTON _Toc395597429 � PAGEREF _Toc395597429 �3-23��

3-28	Enumeration Constraint Diagram	� GOTOBUTTON _Toc395597430 � PAGEREF _Toc395597430 �3-23��

3-29	Integer Constraint Diagram	� GOTOBUTTON _Toc395597431 � PAGEREF _Toc395597431 �3-24��

3-30	Real Constraint Diagram	� GOTOBUTTON _Toc395597432 � PAGEREF _Toc395597432 �3-25��

3-31	Variable Declaration Diagram	� GOTOBUTTON _Toc395597433 � PAGEREF _Toc395597433 �3-26��

3-32	Constant Declaration Diagram	� GOTOBUTTON _Toc395597434 � PAGEREF _Toc395597434 �3-26��

3-33	Length Clause Specification Diagram	� GOTOBUTTON _Toc395597435 � PAGEREF _Toc395597435 �3-29��

3-34	Enumeration Clause Specification Diagram	� GOTOBUTTON _Toc395597436 � PAGEREF _Toc395597436 �3-31��

3-35	Component Representation Clause Specification Diagram	� GOTOBUTTON _Toc395597437 � PAGEREF _Toc395597437 �3-32��

3-36	Record Representation Clause Specification Diagram	� GOTOBUTTON _Toc395597438 � PAGEREF _Toc395597438 �3-32��

3-37	First Tree Structure	� GOTOBUTTON _Toc395597439 � PAGEREF _Toc395597439 �3-34��

3-38	Second Tree Structure	� GOTOBUTTON _Toc395597440 � PAGEREF _Toc395597440 �3-35��

3-39	Third Tree Structure	� GOTOBUTTON _Toc395597441 � PAGEREF _Toc395597441 �3-36��

3-40	Fourth Tree Structure	� GOTOBUTTON _Toc395597442 � PAGEREF _Toc395597442 �3-37��

3-41	Distance Specification Diagram	� GOTOBUTTON _Toc395597443 � PAGEREF _Toc395597443 �3-39��

3-42	Record Value Specification Diagram	� GOTOBUTTON _Toc395597444 � PAGEREF _Toc395597444 �3-47��

3-43	Array Value Specification Diagram	� GOTOBUTTON _Toc395597445 � PAGEREF _Toc395597445 �3-47��

3-44	ASCII Encoded Decimal Integer Format	� GOTOBUTTON _Toc395597446 � PAGEREF _Toc395597446 �3-52��

3-45	ASCII Encoded Decimal Real Format	� GOTOBUTTON _Toc395597447 � PAGEREF _Toc395597447 �3-53��

�

Example

� TOC \f T * MERGEFORMAT �1-1	Example of BNF	� GOTOBUTTON _Toc395597448 � PAGEREF _Toc395597448 �1-4��

3-1	Decimal Literals	� GOTOBUTTON _Toc395597449 � PAGEREF _Toc395597449 �3-4��

3-2	Based Literals	� GOTOBUTTON _Toc395597450 � PAGEREF _Toc395597450 �3-5��

3-3	Enumeration Type Declarations	� GOTOBUTTON _Toc395597451 � PAGEREF _Toc395597451 �3-9��

3-4	Integer Type Declarations	� GOTOBUTTON _Toc395597452 � PAGEREF _Toc395597452 �3-10��

3-5	Real Type Declarations	� GOTOBUTTON _Toc395597453 � PAGEREF _Toc395597453 �3-10��

3-6	Constrained Array Type Definitions	� GOTOBUTTON _Toc395597454 � PAGEREF _Toc395597454 �3-13��

3-7	Unconstrained Array Type Definitions	� GOTOBUTTON _Toc395597455 � PAGEREF _Toc395597455 �3-13��

3-8	Record Type Definitions	� GOTOBUTTON _Toc395597456 � PAGEREF _Toc395597456 �3-15��

3-9	Record Type Definition with Discriminant	� GOTOBUTTON _Toc395597457 � PAGEREF _Toc395597457 �3-17��

3-10	Record Type Definition with Discriminant	� GOTOBUTTON _Toc395597458 � PAGEREF _Toc395597458 �3-17��

3-11	Logical Description of the Packet Format	� GOTOBUTTON _Toc395597459 � PAGEREF _Toc395597459 �3-21��

3-12	Character Declarations	� GOTOBUTTON _Toc395597460 � PAGEREF _Toc395597460 �3-24��

3-13	Subtype Declarations	� GOTOBUTTON _Toc395597461 � PAGEREF _Toc395597461 �3-25��

3-14	Variable Declaration	� GOTOBUTTON _Toc395597462 � PAGEREF _Toc395597462 �3-26��

3-15	Constant Declaration	� GOTOBUTTON _Toc395597463 � PAGEREF _Toc395597463 �3-27��

3-16	Number Declarations	� GOTOBUTTON _Toc395597464 � PAGEREF _Toc395597464 �3-27��

3-17	Marker Declaration	� GOTOBUTTON _Toc395597465 � PAGEREF _Toc395597465 �3-28��

CONTENTS (continued)

Example	Page

3-18	EOF Marker Declaration	� GOTOBUTTON _Toc395597466 � PAGEREF _Toc395597466 �3-28��

3-19	Length Clause Declarations	� GOTOBUTTON _Toc395597467 � PAGEREF _Toc395597467 �3-29��

3-20	Explicit Description of Unused Space	� GOTOBUTTON _Toc395597468 � PAGEREF _Toc395597468 �3-30��

3-21	Enumeration Clause Declarations	� GOTOBUTTON _Toc395597469 � PAGEREF _Toc395597469 �3-31��

3-22	Type Definitions	� GOTOBUTTON _Toc395597470 � PAGEREF _Toc395597470 �3-33��

3-23	Complete Record Representation Clause Declaration	� GOTOBUTTON _Toc395597471 � PAGEREF _Toc395597471 �3-34��

3-24	Incomplete Record Representation Clause Declaration	� GOTOBUTTON _Toc395597472 � PAGEREF _Toc395597472 �3-35��

3-25	Complete Record Representation Clause Declaration	� GOTOBUTTON _Toc395597473 � PAGEREF _Toc395597473 �3-36��

3-26	Complete Record Representation Clause Declaration	� GOTOBUTTON _Toc395597474 � PAGEREF _Toc395597474 �3-38��

3-27	Record Representation Clause Using WORD_32_BITS	� GOTOBUTTON _Toc395597475 � PAGEREF _Toc395597475 �3-39��

3-28	Actual Array Storage Method	� GOTOBUTTON _Toc395597476 � PAGEREF _Toc395597476 �3-41��

3-29	Octet Storage Possibilities	� GOTOBUTTON _Toc395597477 � PAGEREF _Toc395597477 �3-42��

3-30	Actual Bit Order	� GOTOBUTTON _Toc395597478 � PAGEREF _Toc395597478 �3-43��

3-31	Bit Ordering	� GOTOBUTTON _Toc395597479 � PAGEREF _Toc395597479 �3-45��

3-32	Bit Ordering for the Above 16-Bit Signed Integer	� GOTOBUTTON _Toc395597480 � PAGEREF _Toc395597480 �3-48��

3-33	Actual Binary Representation of the Above 16-Bit Signed Integer	� GOTOBUTTON _Toc395597481 � PAGEREF _Toc395597481 �3-48��

3-34	Bit Ordering for the Above 16-Bit Unsigned Integer	� GOTOBUTTON _Toc395597482 � PAGEREF _Toc395597482 �3-48��

3-35	Actual Binary Representation of the Above 16-Bit Unsigned Integer	� GOTOBUTTON _Toc395597483 � PAGEREF _Toc395597483 �3-49��

3-36	Bit Ordering for the Above 32-Bit Real	� GOTOBUTTON _Toc395597484 � PAGEREF _Toc395597484 �3-49��

3-37	Actual Binary Representation of a 32-Bit Real	� GOTOBUTTON _Toc395597485 � PAGEREF _Toc395597485 �3-50��

3-38	ASCII Enumeration Type Logical Declaration	� GOTOBUTTON _Toc395597486 � PAGEREF _Toc395597486 �3-52��

3-39	ASCII Enumeration Type Physical Description	� GOTOBUTTON _Toc395597487 � PAGEREF _Toc395597487 �3-52��

3-40	ASCII Integer Type Logical Declaration	� GOTOBUTTON _Toc395597488 � PAGEREF _Toc395597488 �3-54��

3-41	ASCII Integer Type Physical Description	� GOTOBUTTON _Toc395597489 � PAGEREF _Toc395597489 �3-54��

3-42	ASCII Real Type Logical Declaration	� GOTOBUTTON _Toc395597490 � PAGEREF _Toc395597490 �3-54��

3-43	ASCII Real Type Physical Description	� GOTOBUTTON _Toc395597491 � PAGEREF _Toc395597491 �3-54��

�

��SEQ chapitre \h�INTRODUCTION

PURPOSE AND SCOPE

The purpose of this document is to establish a common Recommendation for the specification of a standard language for describing and expressing data in order to interchange them in a more uniform and automated fashion within and among Agencies participating in the Consultative Committee for Space Data Systems (CCSDS).

This Recommendation defines the EAST language used to create descriptions of data, called Data Description Records (DDRs). Such DDRs ensure a complete and exact understanding of the data and allow it to be interpreted in an automated fashion. This means that a software tool is able to analyze a DDR and interpret the format of the associated data. This allows the software to extract values from the data on any host machine (i.e., on a different machine from the one that produced the data).

A first look at reference � REF Ref_EAST_Tutorial * MERGEFORMAT �[E4]�, which is a tutorial for the EAST language, may aid the user in understanding this document. Reference � REF Ref_EAST_Tutorial * MERGEFORMAT �[E4]� describes the requirements, explains how to use the EAST language to describe non-ambiguous data, and suggests practices and tools to the users.

This Recommendation is registered under the CCSDS Authority and Description Identifier� XE "Identifier" � (ADID): CCSD0010.

APPLICABILITY

The specifications in this document are applicable to all space-related science and engineering data exchanges where data descriptions are desired, and these descriptions need to provide an unambiguous description of the record structure of the data.

RATIONALE

The Consultative Committee for Space Data Systems has defined the Standard Formatted Data Unit (SFDU) concept for the implementation of standard data structures to be used for the interchange of data within and among space agencies.

SFDU data products may be viewed as containing application data (that is the data which is of primary interest, e.g., actual measurements) and data description information (that is the information telling how the application data are formatted).

The data description information shall be provided in a form that is understandable by the agencies involved in the data interchange. That is the reason why the CCSDS must provide some recommendations for the definition of standard description languages. EAST is one of the recommended languages.

DOCUMENT STRUCTURE

The Recommendation is structured as follows:

�SYMBOL 45 \f "Symbol"�	Section � REF _Ref348234319 \n �2� provides an overview of the EAST language.

�SYMBOL 45 \f "Symbol"�	Section � REF _Ref348234357 \n �3� specifies the EAST language and defines its usage in Data Descriptions.

�SYMBOL 45 \f "Symbol"�	Section � REF _Ref348234389 \n �4� lists the EAST reserved keywords.

�SYMBOL 45 \f "Symbol"�	Annex � REF _Ref348234419 \n �0� contains acronyms and the glossary of terms used in this document.

�SYMBOL 45 \f "Symbol"�	Annex � REF _Ref348234536 \n �0� defines the character set to be used in an EAST data description, as well as a predefined type called CHARACTER.

�SYMBOL 45 \f "Symbol"�	Annex � REF _Ref348234582 \n �0� provides the EAST formal specification using a simple variant� XE "Variant" � of the Backus-Naur-Form (BNF� XE "BNF" �).

�SYMBOL 45 \f "Symbol"�	Annex � REF _Ref348234630 \n �0� lists the main differences between the Ada programming language and EAST.

�SYMBOL 45 \f "Symbol"�	Annex � REF _Ref386940281 \n �0� lists the informative references.

DEFINITIONS

TERMS

The terms used throughout this document are listed in annex A. They are also explained in the text when they are first used.

NOMENCLATURE

The following conventions apply throughout this Recommendation:

a)	the words ‘shall’ and ‘must’ imply a binding and verifiable specification;

b)	the word ‘should’ implies an optional, but desirable, specification;

c)	the word ‘may’ implies an optional specification;

d)	the words ‘is’, ‘are’, and ‘will’ imply statements of fact.

CONVENTIONS

This document uses syntax diagrams to illustrate the syntax of the EAST constructs. Components of a construct are called elements. The following conventions are used:

a)	Elements that are presented in bold characters in a circle are reserved keywords, delimiters, or literals.

b)	The item named on the left of the ::= symbol is the item being defined.

c)	The diagram on the right of the ::= symbol is the corresponding definition.

d)	A vertical branch represents a choice.

e)	A repetition is indicated by a loop-back covering the object� XE "Object" � to be repeated.

f)	If the name of any syntactic category starts with an italicized part, it is equivalent to the category name without the italicized part. The italicized part is intended to convey some semantic information. For example, an “Integer Identifier”� XE "Identifier" � is an Identifier; i.e., the definition of the category Identifier applies, but the reader has additional semantic information (it is an integer).

The following example presents a diagram specifying the declaration of Item A. Item A is defined as first a keyword (“type”), then followed by an italicized Item B (already defined, and known as Item B), then followed by a keyword (“is”) and a delimiter� XE "Delimiter" � (“(”). Then this structure is followed by a choice between Items B and C. The choice may be repeated any number of times, each time a delimiter (“,”) is inserted. The structure is ended by two delimiters (“)” and “;”).

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�1�-� SEQ figure�1�: Example of Syntax Diagram �TC \f G "�SEQ chapitre \c�1�-� SEQ figure \c�1�	Example of Syntax Diagram "�

The syntax of the language is described using a simple variant� XE "Variant" � of Backus-Naur-Form with the following conventions:

a)	Boldface words are used to denote reserved keywords.

b)	Square brackets enclose optional items.

c)	Braces enclose a repeated item. This item may appear zero or more times.

d)	A vertical bar separates alternative items unless it occurs immediately after an opening brace ({): in this case it represents the character ‘vertical bar’.

e)	If the name of any syntactic category starts with an italicized part, it is equivalent to the category name without the italicized part. The italicized part is intended to convey some semantic information. This facility used for the BNF� XE "BNF" � intends to assimilate every element like <italicized_part_name> to the previously defined element <name>.

The following example presents the definition of Item A using a simple variant� XE "Variant" � of BNF� XE "BNF" �. Item A is defined as first a keyword (“type”), then followed by an italicized Item B (already defined, and known as Item B), then followed by a keyword (“is”) and a delimiter� XE "Delimiter" � (“(”). The structure is followed by a choice. The choice may be repeated any number of times, each time a delimiter (“,”) is inserted. The structure is ended by two delimiters (“)” and “;”). The choice is between Items B and C.

<Item A> ::= type <Italicized_Item B> is (<choice> { , <choice> }) ;�<choice> ::= <Item B> | <Item C>

Example �SEQ chapitre \c�1�-� SEQ exemple \r 1�1�: Example of BNF� XE "BNF" � �TC \f T "�SEQ chapitre \c�1�-� SEQ exemple \c�1�	Example of BNF "�

In the case of any confusion, the syntax diagram and the associated text are always the reference for the EAST syntax, and not the BNF� XE "BNF" �.

This document uses examples to illustrate the EAST. The following conventions are used in the examples:

a)	bold characters denote reserved keyword or delimiters;

b)	user type names or user variable� XE "Variable" � names are provided using uppercase letters, although EAST is not a case-sensitive language.

REFERENCES

The following documents contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this Recommendation are encouraged to investigate the possibility of applying the most recent editions of the docu�ments indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS Recommendations.

[1]	Information Processing—8-Bit Single-Byte Coded Graphic Character Sets—Part 1: Latin Alphabet No. 1. International Standard, ISO 8859-1:1987. Geneva: ISO, 1987.

[2]	Information Processing—Universal Multiple-Octet Coded Character Set (UCS). International Standard, ISO/IEC 10646-1:1993.

��SEQ chapitre \h�OVERVIEW

DESIGN AIMS

EAST was designed with three overriding concerns: data description capabilities, human readability, and computer interpretability.

The need for data description languages that supply complete and non-ambiguous information about the format and the nature of the described data is well established.

Any user must be able to understand descriptions of data, with a minimal effort. Error-prone notations have been avoided, and the syntax of the EAST language avoids the use of cryptic forms in favor of more English-like constructs.

EAST is a formal language and not a natural language: it is a machine compilable (or interpretable) language. The formal nature of EAST allows the control of data descriptions and the interpretation of data in an automated fashion.

STRUCTURE OF AN EAST DESCRIPTION

An EAST Data Description Record (DDR) includes a syntactic, and in some way semantic, description of the data called a logical description, which is followed by a physical description. The physical description makes possible the interpretation of the actual bit patterns encountered on the medium. Each description part of a DDR consists of an EAST unit, called a package� XE "Package" �: one for the logical part and another one for the associated physical part.

The logical part of an EAST description includes:

�SYMBOL 45 \f "Symbol"�	a logical description of all components of the exchanged data (see � REF _Ref348234787 \n �3.2.1� and � REF _Ref348234827 \n �3.2.2�);

�SYMBOL 45 \f "Symbol"�	their size in bits (see � REF _Ref348234860 \n �3.2.4.1�);

�SYMBOL 45 \f "Symbol"�	their location within the set of the described data (see � REF _Ref350651578 \n �3.2.4.3�).

The physical part of an EAST description includes:

�SYMBOL 45 \f "Symbol"�	the representation of some basic data types (enumeration, integer, and real) defined in the logical description and dependent on the machine that has generated the data (see � REF _Ref348235043 \n �3.3.3�);

�SYMBOL 45 \f "Symbol"�	the array organization (first-index� XE "Index" �-first or last-index-first) used by the generating machine (see � REF _Ref348235123 \n �3.3.1�);

�SYMBOL 45 \f "Symbol"�	the octet and bit organization on the medium (high-order-first or low-order-first—see � REF _Ref348235194 \n �3.3.2�).

A DDR created using the EAST Language has the following structure:

Data Description Record�������package� XE "Package" � name_of_the_logical_description is�������Logical Description� XE "Logical description" � (see � REF _Ref348235298 \n �3.2�)�����end name_of_the_logical_description ;������������package� XE "Package" � name_of_the_physical_description is�������Physical Description� XE "Physical description" � (see � REF _Ref348235331 \n �3.3�)�����end name_of_the_physical_description ;�����������

The logical description always precedes the physical description. The logical and the physical packages are mandatory even if the content of the physical one can be empty (see section � REF _Ref381584971 \n �3.3�).

The two part design of the DDR is intended to allow interchangeable physical description parts for one logical description part, provided that the length of fields in bits in the logical description are supported by field lengths of the same number of bits in the physical description part. For example, a 32 bit real number on a IEEE architecture has a physical description different from the one on a 1750 architecture, although lengths in bits of each field are equal. Note that the representations written to an exchange medium do not have to be the ones typically supported by the writing machine.

The data block associated with the DDR contains one or more complete sets of data. The DDR describes a single set only and is repetitively applied to fully interpret the data block.

LANGUAGE SUMMARY

An EAST description is composed of two units, called packages. The first one is a logical description and the second one is a physical description of the data. The logical part of an EAST description provides syntactic information and in some way semantic information, i.e., the information needed by a user to understand the data he has to deal with. The physical part of an EAST description provides a bit-level description that ensures the non-ambiguous interpretation of the data.

The syntax used in each of the two packages is based on the type and object� XE "Object" � concept. A type is a model, defined once, that is used to create many occurrences (objects) of the models.

Every data item described in an EAST description is an object� XE "Object" �. An object in the language has a type, which characterizes a set of values. The basic classes of types are scalar types (comprising enumeration and numeric types, describing single elements), and composite types (comprising array and record types, describing sequences of objects).

A type has a name: if well chosen, this name is a way to provide the meaning of the model (e.g., the type DATE may describe a CCSDS date). An object� XE "Object" � has a name also: this name is a way to provide (if any) the particularity of the occurrence (e.g., the object DATE_AT_THE_BEGINNING_OF_THE_ORBIT of the type DATE may represent a particular date). The name used to identify a type or an object can be any identifier� XE "Identifier" � except for an EAST reserved keyword (reserved keywords are provided in section � REF _Ref381519410 \n �4�).

An enumeration type defines an ordered set of distinct enumeration literals; for example, a Boolean type defines two enumeration literals (TRUE and FALSE). The enumeration type CHARACTER is predefined and given in section � REF _Ref348236126 \n �3.2.1.1�.

Numeric type� XE "Numeric type" �s provide a means of describing whole numbers and real numbers. Whole numbers are described using integer type� XE "Integer type" �s. Real numbers are described using floating point types, with relative bounds on the error.

Composite type� XE "Composite type" �s allow definitions of structured objects with related components. The composite types of the EAST language are arrays and records. An array is an object� XE "Object" � with indexed components of the same type. The array type STRING is predefined and given in section � REF _Ref348236126 \n �3.2.1.1�. A record is an object with named components of possibly different types.

A record may have special components called discriminants. Discriminants specify either which of alternative record structures is to be used or the dynamic size of an internal array (depending on the values of the discriminants).

The concept of type is refined by the concept of subtype� XE "Subtype" �, whereby a user can constrain the set of allowed values of a type. Subtypes can be used to define subranges of scalar types and arrays with a limited set of index� XE "Index" � values.

Representation clause� XE "Representation clause" �s are used to specify the mapping between logical types and their physical representations. For example, the user specifies that objects of a given type are represented with a given number of bits, or the components of a record are represented using a given storage layout.

NOTES

1	EAST is a subset of the Ada programming language (reference � REF Ref_Ada * MERGEFORMAT �[E3]�). EAST contains therefore most of the declarative features of Ada, but no algorithmic features.

2	The declarative part of Ada normally defines the logical entities and sometimes some of their physical characteristics. EAST extends the descriptive power of the Ada language (using conventions in the physical packages). It is able to describe not only the logical aspects of a data item, but also all its physical aspects.

��SEQ chapitre \h�DEFINITION OF THE EAST LANGUAGE

An EAST Data Description is a text composed of lexical elements, each composed of ASCII characters: the 128 first characters of the Latin Alphabet No. 1. (see reference � REF Ref_Latin_1 * MERGEFORMAT �[1]� and/or annex � REF _Ref348234536 \n �0�). The rules of composition are given in � REF _Ref348235493 \n �3.1�. They are applicable to the whole EAST DDR.

LEXICAL ELEMENTS

A lexical element is either a delimiter� XE "Delimiter" �, an identifier� XE "Identifier" � (which may be a reserved word), a numeric literal, a character string, a string literal, or a comment� XE "Comment" �. The rules of composition are given in this section.

SEPARATORS AND DELIMITERS

In some cases an explicit separator� XE "Separator" � is required to separate adjacent lexical elements (namely, when without separation, interpretation as a single lexical element is possible). A separator is any of a space character, a control character, or the end of a line.

�SYMBOL 45 \f "Symbol"�	A space character is a separator� XE "Separator" � except within a comment� XE "Comment" �, a string literal, or a space character literal.

�SYMBOL 45 \f "Symbol"�	Control characters other than horizontal tabulation are always separators. Horizontal tabulation is a separator� XE "Separator" � except within a comment� XE "Comment" �.

�SYMBOL 45 \f "Symbol"�	The end of a line is always a separator� XE "Separator" �. What defines the end of a line is specified in annex � REF _Ref348234536 \n �0�.

A delimiter� XE "Delimiter" � is either one of the following special characters:

	& ’ () * + , - . / : ; < = > |

or one of the following compound delimiters, each composed of two adjacent special characters:

	=> .. ** := /= >= <= << >> <>

Each of the special characters listed for single character delimiters is a single delimiter� XE "Delimiter" � except if this character is used as a character of a compound delimiter, or as a character of a comment� XE "Comment" �, string literal, character literal, or numeric literal.

The remaining forms of lexical elements are described in � REF _Ref348235610 \n �3.1.2�, � REF _Ref348235619 \n �3.1.3� and � REF _Ref348235632 \n �3.1.4�.

COMMENTS

A comment� XE "Comment" � starts with two adjacent hyphens and extends up to the end of the line. A comment can appear on any line of a description.

IDENTIFIERS

Identifiers are used as names and also as reserved words. See below in Figure � REF Fig_Identifier * MERGEFORMAT �3-1�, the lexical definition of an identifier� XE "Identifier" �:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure \r 1�1�: Identifier Definition Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�1�	Identifier Definition Diagram"�

All characters of an identifier are significant, including any underline character inserted between a letter or a digit and an adjacent letter or digit. Identifiers differing in the use of corresponding upper and lower case letters are considered to be the same.

NUMERIC LITERALS

A numeric literal is either a decimal literal or a based literal. A decimal literal is a numeric literal expressed in the conventional decimal notation (that is, the base is implicitly ten). A based literal is a numeric literal expressed in a form that specifies the base explicitly. The base can only be either two, eight, or sixteen.

In another way, a numeric literal is either an integer literal (decimal or based) or a real literal (decimal or based).

a)	decimal literals

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�2�: Decimal Literal� XE "Decimal literal" � Definition Diagram �TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�2�	Decimal Literal Definition Diagram "�

where Integer Decimal Literal� XE "Decimal literal" � and Real Decimal Literal are defined as in Figures � REF Fig_Integer_Decimal_Literal * MERGEFORMAT �3-3� and � REF Fig_Real_Decimal_Literal * MERGEFORMAT �3-4�:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�3�: Integer Decimal Literal� XE "Decimal literal" � Definition Diagram �TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�3�	Integer Decimal Literal Definition Diagram "�

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�4�: Real Decimal Literal� XE "Decimal literal" � Definition Diagram �TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�4�	Real Decimal Literal Definition Diagram "�

where Integer and Exponent are defined as in Figures � REF Fig_Integer * MERGEFORMAT �3-5� and � REF Fig_Exponent * MERGEFORMAT �3-6�:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�5�: Integer Definition Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�5�	Integer Definition Diagram"�

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�6�: Exponent Definition Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�6�	Exponent Definition Diagram"�

An underline character inserted between adjacent digits of a decimal literal does not affect the value of this decimal literal. The letter E of the exponent, if any, can be written either in lowercase or in uppercase, with the same meaning. Leading zeros are allowed. No space is allowed in a decimal literal.

	12	0	1E6	123_456	-- integer literals�	12.0	0.0	0.456	3.14159_26	-- real literals�	1.3E-12	1.0E+6			-- real literals with exponent

Example �SEQ chapitre \c�3�-�SEQ exemple \r 1�1�: Decimal Literal� XE "Decimal literal" �s �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�1�	Decimal Literals"�

b)	based literals

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�7�: Based Literal� XE "Based literal" � Definition Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�7�	Based Literal Definition Diagram"�

where Integer Based Literal� XE "Based literal" � and Real Based Literal are defined as in Figure � REF Fig_Integer_Based_Literal * MERGEFORMAT �3-8� and Figure � REF Fig_Real_Based_Literal * MERGEFORMAT �3-9�:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�8�: Integer Based Literal� XE "Based literal" � Definition Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�8�	Integer Based Literal Definition Diagram"�

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�9�: Real Based Literal� XE "Based literal" � Definition Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�9�	Real Based Literal Definition Diagram"�

where Based Integer is defined as in Figure � REF Fig_Based_Integer * MERGEFORMAT �3-10�:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�10�: Based Integer Definition Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�10�	Based Integer Definition Diagram"�

The only letters allowed as extended digits are the letters A through F representing ten through fifteen. Letters are allowed for a based integer only if the base of the literal of which it is a part is 16. A letter in a based literal can be written either in lowercase or in uppercase, with the same meaning. No space is allowed in a based literal.

	2#1111_1111#	16#FF#	016#0FF#	-- integer literals of value 255�	16#E#E1	2#1110_0000#		-- integer literals of value 224

	16#F.FF#E+2	2#1.1111_1111_111#E11	-- real literals of value 4095.0

Example �SEQ chapitre \c�3�-�SEQ exemple�2�: Based Literal� XE "Based literal" �s �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�2�	Based Literals"�

c) integer literals

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�11�: Integer Literal Definition Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�11�	Integer Literal Definition Diagram"�

c) real literals

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�12�: Real Literal Definition Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�12�	Real Literal Definition Diagram"�

LOGICAL DESCRIPTION

The logical part of an EAST DDR is composed of:

�SYMBOL 45 \f "Symbol"�	the logical description of the models of data (using type and subtype� XE "Subtype" � declarations for the syntactic definition of the data, and using representation clauses for the specification of their size in bits and their location within the set of data);

�SYMBOL 45 \f "Symbol"�	the declaration of the data occurrences, i.e., the declaration of the described data items (using object� XE "Object" � declarations).

The logical part of the Data Description Record consists of a package� XE "Package" �. This unit is introduced by the keyword package, followed by the package name, and ends with “end package name;”. The package name is an identifier� XE "Identifier" � (see � REF _Ref381585085 \n �3.1.3�).

Types are models, and objects are instances (or occurrences) of these models. Type declarations describe therefore the structure of the data elements which may occur in the described data, while the actual data occurrences are represented by the declaration of variables and constants.

A type (except predefined type), a subtype� XE "Subtype" � or a constant� XE "Constant" � (except predefined constant) must be declared in the package� XE "Package" � before being used.

The declaration of variables must occur in the latter section of the logical description. Constants may be declared in the type declaration section or in the section for the declaration of variables: in the first section, they contribute to data models definition, while they represent data occurrences in the second section.

The described data is a concatenation of elements in the order of the corresponding variables. The types used in the declaration of variables must have been previously declared in the package� XE "Package" �.

Figure � REF Fig_Logical_Part_Structure * MERGEFORMAT �3-13� summarizes the content of the logical part of a DDR.

package� XE "Package" � logical_package_name is�����Section for the Declaration of Types: Definition of the Data Models�����SYMBOL 45 \f "Symbol"�	type declarations and representation clauses (see � REF _Ref348235715 \n �3.2.1� and � REF _Ref348235736 \n �3.2.4�)��SYMBOL 45 \f "Symbol"�	subtype� XE "Subtype" � and constant� XE "Constant" � declarations (see � REF _Ref348235799 \n �3.2.2� and � REF _Ref348235970 \n �3.2.3.2�) ����Section for the Declaration of Variables: Definition of the Data Occurrences�����SYMBOL 45 \f "Symbol"�	variable� XE "Variable" � and constant� XE "Constant" � declarations (see � REF _Ref348236040 \n �3.2.3.1� and � REF _Ref348235970 \n �3.2.3.2�)���end logical_package� XE "Package" �_name ;����Figure �SEQ chapitre \c�3�-� SEQ figure�13�: Logical Part Structure�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�13�	Logical Part Structure"�

TYPE DECLARATIONS

The type is characterized by a set of permissible values. Several classes of types exist: scalar types (enumeration types, integer type� XE "Integer type" �s, and real types), array types, and record types. Some types are EAST predefined types (see � REF _Ref348236126 \n �3.2.1.1�); the other types are user defined types and must be declared according to a specific syntax (see � REF _Ref348235861 \n �3.2.1.2�, � REF _Ref381689014 \n �3.2.1.3�, � REF _Ref381689029 \n �3.2.1.4�, � REF _Ref348236182 \n �3.2.1.5� and � REF _Ref381757010 \n �3.2.1.6�).

Predefined Type� XE "Predefined type" �s

There are three predefined types provided by the EAST language: CHARACTER, STRING and EOF. Predefined means that no previous declaration has to be made explicitly by the user to use one of these types.

The predefined type CHARACTER is an enumeration type (see next subsection for the enumeration definition syntax rules), whose values are the 256 characters of the 8-bit coded Latin Alphabet No. 1. character set (see annex � REF _Ref348234536 \n �0� and reference � REF Ref_Latin_1 * MERGEFORMAT �[1]�).

The values of the predefined type STRING are one-dimensional arrays of the predefined type CHARACTER, indexed by values in increments of one of any positive integer type� XE "Integer type" �.

The number of characters must be specified every time the type is used.

As an example STRING(1 .. 10) designates a 10 character string, while STRING(10 .. 22) designates a 13 character string.

The predefined type EOF is exclusively used to declare a fictive end delimiter called EOF Marker (see � REF _Ref382472730 \n �3.2.3.2.2�).

Enumeration Type� XE "Enumeration type" �

An enumeration type is defined as a set of enumeration literals. An enumeration literal is an identifier� XE "Identifier" � or a character literal for one of the possible values of the type. Figure � REF Fig_Enumeration_Type * MERGEFORMAT �3-14� illustrates the syntax of an enumeration type specification. Each enumeration literal yields a different enumeration value.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�14�: Enumeration Type� XE "Enumeration type" � Specification Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�14�	Enumeration Type Specification Diagram"�

where the enumeration literal is defined as in Figure � REF Fig_Enum_Literal * MERGEFORMAT �3-15�:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�15�: Enumeration Literal Definition Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�15�	Enumeration Literal Definition Diagram"�

The following example presents some enumeration type definitions.

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);�type STATE is (OFF , ON);�type ROMAN_DIGIT is (‘I’ , ‘V’ , ‘X’ , ‘L’ , ‘C’ , ‘D’ , ‘M’);

Example �SEQ chapitre \c�3�-� SEQ exemple�3�: Enumeration Type� XE "Enumeration type" � Declarations �TC \f T "�SEQ chapitre \c�3�-� SEQ exemple \c�3�	Enumeration Type Declarations"�

Integer Type

An integer type� XE "Integer type" � is defined as a set of integer values specified by a range. Each bound of the range is an integer constant� XE "Constant" � identifier� XE "Identifier" � (see � REF _Ref348235970 \n �3.2.3.2�) or an integer literal (see � REF _Ref381525201 \n �3.1.4�). Note that both bounds need not have the same integer type and that negative bounds are allowed. The range L .. R specifies the value from L to R inclusive if the relation L <= R is true. A null range is a range for which the relation R < L is true; no value belongs to a null range.

Figure � REF Fig_Integer_Type * MERGEFORMAT �3-16� illustrates the syntax of an integer type� XE "Integer type" � specification.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�16�: Integer Type Specification Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�16�	Integer Type Specification Diagram"�

The following example presents an integer type� XE "Integer type" �, defined using integer literals (-10 and 10) and an integer type, defined using a constant� XE "Constant" � identifier� XE "Identifier" � (MAX).

type SMALL_INTEGER is range -10 .. 10;�type NUMBER is range 0 .. MAX; �-- where MAX could be defined as: MAX := 100;

Example �SEQ chapitre \c�3�-� SEQ exemple�4�: Integer Type Declarations �TC \f T "�SEQ chapitre \c�3�-� SEQ exemple \c�4�	Integer Type Declarations"�

Real Type� XE "Real type" �

Real type� XE "Real type" �s provide approximations to real numbers, with relative bounds on errors. The error bound is specified as a relative precision by giving the required minimum number of significant decimal digits. The range bounds are optional. When they are specified, they are either real constant� XE "Constant" � identifier� XE "Identifier" � (see � REF _Ref348235970 \n �3.2.3.2�) or real literal (see � REF _Ref381525304 \n �3.1.4�).

Figure � REF Fig_Real_Type * MERGEFORMAT �3-17� illustrates the syntax of a real type specification.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�17�: Real Type� XE "Real type" � Specification Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�17�	Real Type Specification Diagram"�

The following example presents some real type definitions.

type COEFFICIENT is digits 10 range 0.1 .. 1.0;�type REAL is digits 15;

Example �SEQ chapitre \c�3�-� SEQ exemple�5�: Real Type� XE "Real type" � Declarations �TC \f T "�SEQ chapitre \c�3�-� SEQ exemple \c�5�	Real Type Declarations"�

NOTE	 �SYMBOL 45 \f "Symbol"�	The range is optional in a real type declaration. If the real type declaration specifies no range, then the range is supposed to be the largest range that can be implemented within the specified number of bits (see � REF _Ref348234860 \n �3.2.4.1�) accommodating the number of significant digits. When unspecified, the range will depend on the convention used to represent the binary values of the real type (see � REF _Ref348236555 \n �3.3.3.1�).

Array Type� XE "Array type" �

An array type is a composite type consisting of components that have the same type. The name for a component of an array uses one or more index� XE "Index" � values belonging to specified discrete types.

A discrete type is either an enumeration type or an integer type� XE "Integer type" �.

An array type is characterized by:

�SYMBOL 45 \f "Symbol"�	an ordered list of indices� XE "Index" �;

�SYMBOL 45 \f "Symbol"�	the type of each index� XE "Index" �;

�SYMBOL 45 \f "Symbol"�	the lower and upper bound for each index� XE "Index" �;

�SYMBOL 45 \f "Symbol"�	the type of the components.

The order of indices� XE "Index" � is significant. The index type and component type declarations must precede the array type declaration that makes use of them, except if one of these types is a predefined type of the EAST language.

A one-dimensional array has a distinct component for each possible index� XE "Index" � value. A multi-dimensional array has a distinct component for each possible sequence of index values that can be formed by selecting one value for each index position within the list of indices (in the given order).

The possible values for a given index� XE "Index" � are all the values between the lower and upper bounds, inclusive; this range of values is called the index range. Figure � REF Fig_Array_Type * MERGEFORMAT �3-18� illustrates the syntax of an array type specification.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�18�: Array Type� XE "Array type" � Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�18�	Array Type Specification Diagram"�

An array type can be constrained (i.e., have a fixed number of elements) or unconstrained (i.e., have an undetermined number of elements), depending on the specification of the indices� XE "Index" �. In multi-dimensional array types, the indices are either all determined or all undetermined.

An index� XE "Index" � is specified as follows:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�19�: Index� XE "Index" � Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�19�	Index Specification Diagram"�

In the “..” notation, the first identifier� XE "Identifier" � or literal specifies the lower bound, while the second one specifies the upper bound.

The “range <>” expression denotes an undetermined number of elements.

The following example defines array types, for which the number of elements is known: 100 characters in a line, and 7 states in a schedule.

type LINE is array(1 .. 100) of CHARACTER; �-- CHARACTER is an EAST predefined type�type SCHEDULE is array(DAY) of STATE;�-- DAY is an enumeration type defined in � REF _Ref348235861 \n �3.2.1.2� as: �-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);

Example �SEQ chapitre \c�3�-�SEQ exemple�6�: Constrained Array Type� XE "Array type" �� XE "Constraint array type" � Definitions �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�6�	Constrained Array Type Definitions"�

The following example defines array types, for which the number of elements is not known: because of the definition of the integer type� XE "Integer type" � NUMBER, VECTOR may contain at a maximum MAX reals, and at a minimum 0 real.

type VECTOR is array(NUMBER range <>) of REAL;�type MATRIX is array(NUMBER range <>, NUMBER range <>) of REAL;�-- NUMBER is an integer type� XE "Integer type" � defined in � REF _Ref381689014 \n �3.2.1.3� as:�-- type NUMBER is range 0 .. MAX;�-- REAL is a real type defined in � REF _Ref381689029 \n �3.2.1.4� as:�-- type REAL is digits 15;

Example �SEQ chapitre \c�3�-�SEQ exemple�7�: Unconstrained Array Type� XE "Array type" �� XE "Unconstrained array type" � Definitions �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�7�	Unconstrained Array Type Definitions"�

The actual number of elements must be specified every time an unconstrained array type is used, while the number of elements must not be specified when a constrained array type is used (because this number is already fixed by the type definition).

As an example, MATRIX(1 .. 512, 1 .. 512) designates a matrix which contains 512*512 elements.

If the lower bound of an index� XE "Index" � range is greater than the upper bound (i.e., if the index range is zero), then the corresponding array row/column has no component.

NOTE	�SYMBOL 45 \f "Symbol"�	Ways of storing arrays and, therefore, which array index� XE "Index" � varies first are discussed in section � REF _Ref381525521 \n �3.3.1�.

Record Type� XE "Record type" �

A record type is a composite type consisting of a sequence of named components. EAST forbids identical component names in a record. This sequence contains the declaration of each component of the record type. Each declaration indicates the type of the component. Each component type must have been previously defined.

The identifiers of all components of a record type must be distinct. Figure � REF Fig_Record_Type * MERGEFORMAT �3-20� illustrates the syntax of a record type specification:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�20�: Record Type� XE "Record type" � Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�20�	Record Type Specification Diagram"�

where a component declaration is specified as in Figure � REF Fig_Component * MERGEFORMAT �3-21�:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�21�: Component Declaration Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�21�	Component Declaration Diagram"�

An index� XE "Index" � constraint shall be present for an array component if the array type identifier� XE "Identifier" � corresponds to an unconstrained array type. In this case, the constraint is specified as in Figure � REF Fig_Index_Constraint * MERGEFORMAT �3-22�:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�22�: Index� XE "Index" � Constraint Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�22�	Index Constraint Diagram"�

The following example presents two record type definitions that consist only of simple component declarations:

type COMPLEX is record�	REAL_PART: REAL;�	IMAGINARY_PART: REAL;�end record;�-- REAL is a real type defined in � REF _Ref381689029 \n �3.2.1.4� as:�-- type REAL is digits 15;�type MEASUREMENT_BLOCK is record�	TODAY: DAY;�	TEMPERATURE: SMALL_INTEGER;�	VOLUME: SMALL_INTEGER;�	FIRST_SEQUENCE_OF_MEASUREMENTS: VECTOR(1 .. 100);�	SECOND_SEQUENCE_OF_MEASUREMENTS: VECTOR(1 ..10);�end record;�-- DAY is an enumeration type defined in � REF _Ref348235861 \n �3.2.1.2� as:�-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);�-- SMALL_INTEGER is an integer type� XE "Integer type" � defined in � REF _Ref381689014 \n �3.2.1.3� as:�-- type SMALL_INTEGER is range -10 .. 10;�-- VECTOR is an array type defined in � REF _Ref348236182 \n �3.2.1.5� as:�-- type VECTOR is array (NUMBER range <>) of REAL;

Example �SEQ chapitre \c�3�-�SEQ exemple�8�: Record Type� XE "Record type" � Definitions �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�8�	Record Type Definitions"�

Some records may contain components of which the size or even the existence depends on the value of another component, called a discriminant� XE "Discriminant" �. The type of a discriminant must be discrete. Figure � REF Fig_Discriminant * MERGEFORMAT �3-23� illustrates the syntax of a discriminant specification.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�23�: Discriminant� XE "Discriminant" � Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�23�	Discriminant Specification Diagram"�

Figure � REF Fig_Variant_Part * MERGEFORMAT �3-24� illustrates the syntax of a variant� XE "Variant" � part, introduced by the presence of a discriminant� XE "Discriminant" �.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�24�: Variant� XE "Variant" � Part Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�24�	Variant Part Specification Diagram"�

The “when others” clause is mandatory only if all the possible values of the discriminant� XE "Discriminant" � are not explicitly named before, in the variant� XE "Variant" � part specification.

The following example presents a discriminant� XE "Discriminant" � that conditions the existence of other components:

type ACTIVITY(TODAY: DAY := MON) is record�	case TODAY is�		when SAT | SUN =>�			SLEEPING: DURATION_IN_HOURS;�			PLAYING_TENNIS: DURATION_IN_HOURS;�			SWIMMING: DURATION_IN_HOURS;�		when MON =>�			RESTING_AFTER_WEEK_END: DURATION_IN_HOURS;�		when others =>�			WORKING: DURATION_IN_HOURS;�	end case;�end record;�-- DAY is an enumeration type defined in � REF _Ref348235861 \n �3.2.1.2� as:�-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);�-- DURATION_IN_HOURS is an integer type� XE "Integer type" � defined as: �-- type DURATION_IN_HOURS is range 0 .. 24;

Example �SEQ chapitre \c�3�-�SEQ exemple�9�: Record Type� XE "Record type" � Definition with Discriminant� XE "Discriminant" � �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�9�	Record Type Definition with Discriminant"�

In this example, TODAY is a discriminant� XE "Discriminant" � for the type ACTIVITY: other components of the record might change depending on the value of TODAY.

The keyword case introduces the variant part, which consists of alternative lists of components. The keyword when, followed by one or more values (separated by a vertical bar) of the type of the discriminant� XE "Discriminant" � of the variant part, introduces a list of components that are present for the specified value(s) of the discriminant. The keyword others represents all the possible values of the type of the discriminant that have not been taken into account explicitly before (in this example, others is equivalent to TUE | WED | THU | FRI).

The following example presents a discriminant� XE "Discriminant" � that conditions a size:

type SQUARE(LENGTH: NUMBER := 10) is record�	MAT: MATRIX(1 .. LENGTH, 1 .. LENGTH);�end record; �-- NUMBER is an integer type� XE "Integer type" � defined in � REF _Ref381689014 \n �3.2.1.3� as:�-- type NUMBER is range 0 .. MAX;�-- MATRIX is an array type defined in � REF _Ref348236182 \n �3.2.1.5� as:�-- type MATRIX is array (NUMBER range <> , NUMBER range <>) of REAL;

Example �SEQ chapitre \c�3�-�SEQ exemple�10�: Record Type� XE "Record type" � Definition with Discriminant� XE "Discriminant" � �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�10�	Record Type Definition with Discriminant "�

In the previous example, LENGTH is a discriminant� XE "Discriminant" � for the type SQUARE: the value of LENGTH determines the size of the matrix. If LENGTH is less than 1 (i.e., LENGTH is equal to 0), then the matrix has no element. If LENGTH is, for example, equal to 5, then the matrix has 25 elements.

The EAST syntax requires a default value for each discriminant� XE "Discriminant" � (if any) in a record type declaration. A default value does not preclude any possible value for the discriminant of corresponding record objects. In the case of the type “SQUARE”, the default value could have been any allowed value for the integer type� XE "Integer type" � “NUMBER”, i.e., in the range 0 .. MAX.

Some records may contain components of which the size or the existence depend on the value of a data item that is not part of the record: this data item is considered to be a discriminant� XE "Discriminant" � for the record, except that the occurrence of this discriminant is not in the record itself. Such a discriminant is called a virtual� XE "Virtual discriminant" � discriminant.

The syntax of a virtual� XE "Virtual discriminant" � discriminant� XE "Discriminant" � is the same as a “classic” discriminant (see Figure � REF Fig_Discriminant * MERGEFORMAT �3-23�). The only difference is that the discriminant identifier� XE "Identifier" � begins in this case with “VIRTUAL_” and does not represent any data item occurrence.

Figure � REF Fig_Packet_Format * MERGEFORMAT �3-25� presents an example of virtual� XE "Virtual discriminant" � discriminant� XE "Discriminant" � use; it describes a packet format.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�25�: Discriminants in a Packet Format�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�25�	Discriminants in a Packet Format"�

This tree structure can be described using EAST type definitions as follows:

-- basic data types used in the first branch�type VERSION is (VERSION_1, VERSION_2);��type PACKET_TYPE is (TELEMETRY , TELECOMMAND);��type PRESENCE_FLAG is (ABSENT , PRESENT);��type PROCESS_IDENTIFICATION is (WORKING , IDLE);��-- structuring type for the Packet Identification�type PACKET_IDENTIFICATION_TYPE is record�	VERSION_NUMBER: VERSION;�	TYPE_ID: PACKET_TYPE;�	SECONDARY_HEADER_FLAG: PRESENCE_FLAG;�	APPLICATION_PROCESS_ID: PROCESS_IDENTIFICATION; �end record;��-- basic data types used in the second branch�type STATUS is (CONTINUATION_SEGMENT, �		FIRST_SEGMENT, LAST_SEGMENT, UNSEGMENTED_PACKET);��type COUNTER is range 0 .. 16383;��-- structuring type for the Packet Sequence Control�type PACKET_SEQUENCE_CONTROL_TYPE is record�	SEGMENTATION_FLAG: STATUS;�	SOURCE_SEQUENCE_COUNT: COUNTER;�end record;��-- basic data types used in the other branches�type NUMBER is range 0 .. 65535;��type OCTET is range 0 .. 255;

.../...

.../...

-- structuring types�type DATA_ARRAY is array (NUMBER range <>) of OCTET;�type SECONDARY_HEADER_TYPE is array (1 .. 4) of OCTET;��type PRIMARY_HEADER_TYPE is record� PACKET_IDENTIFICATION: PACKET_IDENTIFICATION_TYPE;� PACKET_SEQUENCE_CONTROL: PACKET_SEQUENCE_CONTROL_TYPE;� SOURCE_DATA_LENGTH: NUMBER;�end record;��type PACKET_FORMAT_TYPE(�	VIRTUAL_SECONDARY_HEADER_FLAG: PRESENCE_FLAG := PRESENT;�	-- point to the secondary header flag located in the first branch�	VIRTUAL_SOURCE_DATA_LENGTH: NUMBER := 256) �	-- point to the source data length located in the third branch�is record�	PRIMARY_HEADER: PRIMARY_HEADER_TYPE;�	case VIRTUAL_SECONDARY_HEADER_FLAG is�	 when ABSENT =>�SOURCE_DATA_0: DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);�	 when PRESENT =>�		SECONDARY_HEADER: SECONDARY_HEADER_TYPE;�SOURCE_DATA_1: DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);�	end case;�end record;

Example �SEQ chapitre \c�3�-�SEQ exemple�11�: Logical Description� XE "Logical description" � of the Packet Format �TC \f T " �SEQ chapitre \c�3�-�SEQ exemple \c�11�	Logical Description of the Packet Format"�

The two virtual� XE "Virtual discriminant" � discriminants “VIRTUAL_SECONDARY_HEADER_FLAG” and “VIRTUAL_SOURCE_DATA_LENGTH” do not really exist in the exchanged data block. They serve as a link between other data:

�SYMBOL 45 \f "Symbol"�	VIRTUAL_SECONDARY_HEADER_FLAG is supposed to have the value of the SECONDARY_HEADER_FLAG field in the PACKET IDENTIFICATION block; it conditions the existence of the SECONDARY_HEADER block. It serves as a link between these two fields.

�SYMBOL 45 \f "Symbol"�	VIRTUAL_SOURCE_DATA_LENGTH is supposed to have the value of the SOURCE_DATA_LENGTH field in the PRIMARY HEADER; it conditions the size of the SOURCE DATA block. It also serves as a link.

Type Summary

The following diagram presents the types that can be found in the logical part of an EAST description:

� EMBED Designer ���

Figure �SEQ chapitre \c�3�-�SEQ figure�26�: Type Summary�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�26�	Type Summary"�

Scalar type� XE "Scalar type" �s have a binary coding or an ASCII coding, according to their physical description (see � REF _Ref381521471 \n �3.3.3�).

A variant record is a record that contains at least one discriminant. An invariant record contains no discriminant.

SUBTYPE DECLARATIONS

A subtype� XE "Subtype" � of a given type is used to restrict the set of values of the initial type. The initial type must be known at the subtype declaration time: either it is a predefined type of the EAST language or it has been previously declared.

Figure � REF Fig_Subtype * MERGEFORMAT �3-27� illustrates the syntax of a subtype� XE "Subtype" � declaration.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�27�: Subtype� XE "Subtype" � Declaration Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�27�	Subtype Declaration Diagram"�

The constraint for an enumeration subtype� XE "Subtype" � is defined in Figure � REF Fig_Enumeration_Constraint * MERGEFORMAT �3-28�.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�28�: Enumeration Constraint� XE "Enumeration constraint" � Diagram �TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�28�	Enumeration Constraint Diagram"�

If a character literal used as range bound is not a printable character (as defined in annex � REF _Ref348234536 \n �0�), its constant� XE "Constant" � identifier� XE "Identifier" � is used (constants of the type CHARACTER are defined in annex � REF _Ref348234536 \n �0� in a table called ASCII).

The constant� XE "Constant" � identifier� XE "Identifier" � for a character must be prefixed by “ASCII.”, in order to avoid any confusion with other identifiers defined in the current description.

The following example defines some subtypes of CHARACTER:

subtype� XE "Subtype" � CAPITAL_LETTER is CHARACTER range ‘A’ .. ‘Z’;�-- the range bounds are printable

subtype� XE "Subtype" � LINE_FORMAT is CHARACTER range ASCII.HT .. ASCII.CR;�-- the range bounds are not printable

Example �SEQ chapitre \c�3�-�SEQ exemple�12�: Character Declarations �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�12�	Character Declarations"�

The constants of the type CHARACTER, which are specified in the ASCII table, are EAST predefined constants.

The constraint for an integer subtype� XE "Subtype" � is defined in Figure � REF Fig_Integer_Constraint * MERGEFORMAT �3-29�.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�29�: Integer Constraint� XE "Integer constraint" � Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�29�	Integer Constraint Diagram"�

In the previous diagram, the first integer gives the lower bound and the second the upper bound of the specified range.

The constraint for a real subtype� XE "Subtype" � is defined in Figure � REF Fig_Real_Constraint * MERGEFORMAT �3-30�.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�30�: Real Constraint� XE "Real constraint" � Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�30�	Real Constraint Diagram"�

In the previous diagram, the first real gives the lower bound and the second the upper bound of the specified range.

The constraint for an array subtype� XE "Subtype" � or for a subtype of the predefined type STRING is defined in Figure � REF Fig_Index_Constraint * MERGEFORMAT �3-22� (on page � PAGEREF Fig_Index_Constraint �3-15�). In this diagram, the discrete literal in the range specification is any integer (based or decimal integer) literal or any enumeration literal. In the same way, the discrete constant� XE "Constant" � identifier� XE "Identifier" � in the range specification is any integer or enumeration constant (see � REF _Ref348235970 \n �3.2.3.2�).

The following example defines some subtypes:

subtype� XE "Subtype" � WEEK_END is DAY range SAT .. SUN ; �-- where DAY is an enumeration type defined in � REF _Ref348235861 \n �3.2.1.2� as:�-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);�subtype VERY_SMALL_INTEGER is SMALL_INTEGER range �5 .. 5;�-- where SMALL_INTEGER is an integer type� XE "Integer type" � defined in � REF _Ref381689014 \n �3.2.1.3� as:�-- type SMALL_INTEGER is range -10 .. 10;�subtype MY_REAL is REAL range �9_999.999 .. 9_999.999;�-- where REAL is a real type defined in � REF _Ref381689029 \n �3.2.1.4� as:�-- type REAL is digits 15;�subtype SMALL_MATRIX is MATRIX (1 .. 10 , 1 .. 10);�-- where MATRIX is an array type defined in � REF _Ref348236182 \n �3.2.1.5� as:�-- type MATRIX is array (NUMBER range <>, NUMBER range <>) of REAL;�subtype NAME is STRING (1 .. 32);�-- where STRING is a predefined array type (see � REF _Ref348236126 \n �3.2.1.1�).

Example �SEQ chapitre \c�3�-�SEQ exemple�13�: Subtype� XE "Subtype" � Declarations �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�13�	Subtype Declarations"�

OBJECT DECLARATIONS

An object� XE "Object" � is an entity that contains a value of a given type. A declared object is called a constant� XE "Constant" � if the reserved word constant appears in the object declaration. An object that is not a constant is called a variable� XE "Variable" �.

Declaration of Variables

The declaration of a variable� XE "Variable" � uses the previous type, subtype,� XE "Subtype" � or constant� XE "Constant" � declarations. Variables correspond to the data that are to be exchanged. Figure � REF Fig_Variable * MERGEFORMAT �3-31� illustrates the syntax for the declaration of a variable.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�31�: Variable� XE "Variable" � Declaration Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�31�	Variable Declaration Diagram"�

A variable� XE "Variable" � declaration consists of only one identifier� XE "Identifier" � (the variable identifier) followed by the identifier of the type that describes the corresponding data.

UPDATED_DATA: MEASUREMENT_BLOCK ;�-- MEASUREMENT_BLOCK is a record type defined in � REF _Ref381757010 \n �3.2.1.6�

Example �SEQ chapitre \c�3�-�SEQ exemple�14�: Variable� XE "Variable" � Declaration �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�14�	Variable Declaration"�

Declaration of Constants

The declaration of a constant� XE "Constant" � must include an explicit initialization, except for the EOF Marker declaration (see � REF _Ref382472730 \n �3.2.3.2.2�). This declaration guarantees that the corresponding object� XE "Object" � value cannot be modified after initialization. Figure � REF Fig_Constant * MERGEFORMAT �3-32� illustrates the syntax of a constant declaration.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure�32�: Constant� XE "Constant" � Declaration Diagram�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�32�	Constant Declaration Diagram"�

A constant� XE "Constant" � declaration consists of only one identifier� XE "Identifier" � (the constant identifier) followed by the reserved word constant, an optional identifier for the constant type, and the value of the constant.

FIRST_DAY_OF_THE_WEEK: constant� XE "Constant" � DAY := MON;

Example �SEQ chapitre \c�3�-� SEQ exemple�15�: Constant� XE "Constant" � Declaration �TC \f T "�SEQ chapitre \c�3�-� SEQ exemple \c�15�	Constant Declaration"�

The value of a constant� XE "Constant" � can be specified as a static expression, combining other constant values and operators (‘+’, ‘*’, ‘**’, ‘-’, ‘/’, ‘(’ and ‘)’).

‘+’ and ‘-’ are unary or binary operators (addition and subtraction). ‘*’, ‘/’ and ‘**’ are binary operators: ‘*’ is the multiplication operator, ‘/’ is the division operator, ‘**’ is the exponentiation operator. ‘(’ and ‘)’ are used to specify an explicit precedence for the expression evaluation.

Constants may be declared either in the section for the declaration of types or in the section for the declaration of variables (see Figure � REF Fig_Logical_Part_Structure * MERGEFORMAT �3-13�). In the first case, they contribute to data model definitions while they represent, in the second case, some special data occurrences called markers.

The first definition of a variable� XE "Variable" � within the logical description part delimits the two sections. Any declaration that occurs before the first variable definition belongs to the section for the declaration of types. Any declaration that occurs after the first variable definition (including the first variable declaration itself) belongs to the section for the declaration of variables.

Constants in the Section for the Declaration of Types

A constant� XE "Constant" � that is declared in the section for the declaration of types can be used:

�SYMBOL 45 \f "Symbol"�	in type or subtype� XE "Subtype" � declarations for the specification of range bounds,

�SYMBOL 45 \f "Symbol"�	in constant� XE "Constant" � declarations for the specification of the values.

In this case, the constant� XE "Constant" � is either an integer constant, a real constant, or an enumeration constant, the end objective of the constant being its use as a range bound.

A number declaration is a special form of a constant� XE "Constant" � declaration, where no type is specified.

PI: constant� XE "Constant" � := 3.14159_26536; -- a real number�MAXIMUM: constant := 500; -- an integer number�NUMBER_OF_VALUES_OF_AN_OCTET: constant := 2**8; -- the integer 256

Example �SEQ chapitre \c�3�-� SEQ exemple�16�: Number Declarations �TC \f T "�SEQ chapitre \c�3�-� SEQ exemple \c�16�	Number Declarations"�

Markers: Constants in the Section for the Declaration of Variables

A marker� XE "Marker" � declaration is a special form of a constant� XE "Constant" � declaration, where the type of the constant is mandatory and occurs within the section for the declaration of variables.

A marker� XE "Marker" � is used to delimit the end of the repetition of an element. Its declaration occurs after the declaration of a variable� XE "Variable" �. This variable that is declared immediately before the constant occurs an undetermined number of times, the last instance being followed by the constant� XE "Constant" � value.

A marker� XE "Marker" � is a constant� XE "Constant" � which should be unambiguously recognized. The type of a marker is therefore restricted to integer type� XE "Integer type" �, enumeration type, character type, or character string type.

The following example represents a set of values, the number of values being unspecified. The end of the set occurs when the character string “END” is encountered within the data.

VALUE : COEFFICIENT; 	-- COEFFICIENT is a real type defined in 3.2.1.4 as:�				-- type COEFFICIENT is digits 10 range 0.0 .. 1.0;

END_OF_COEFFICIENTS : constant� XE "Constant" � STRING := “END”;

Example �SEQ chapitre \c�3�-� SEQ exemple�17�: Marker� XE "Marker" � Declaration�TC \f T "�SEQ chapitre \c�3�-� SEQ exemple \c�17�	Marker Declaration"�

The element of a repetition delimited by a marker can only be a variable.

The presence of the EOF marker implies that the previous element is repeated until the File Management System returns an “end of file” indication.

The following convention is adopted: the type of the Marker is an EAST predefined type, called EOF. No explicit value is associated with this constant since this value is unknown. This is the only case of a constant declaration where the value is absent.

NOTE	�SYMBOL 45 \f "Symbol"�	The EOF marker� XE "Marker" � can only be used once in an EAST description. It is the last declaration in the logical description part.

The next example presents the description of a data file that contains a header and n values (n being undetermined).

HEADER : HEADER_TYPE; -- any record type

VALUE : COEFFICIENT; 	-- COEFFICIENT is a real type defined in 3.2.1.4 as:�				-- type COEFFICIENT is digits 10 range 0.0 .. 1.0;

END_OF_COEFFICIENTS : constant� XE "Constant" � EOF ;

Example �SEQ chapitre \c�3�-� SEQ exemple�18�: EOF Marker� XE "Marker" � Declaration�TC \f T "�SEQ chapitre \c�3�-� SEQ exemple \c�18�	EOF Marker Declaration"�

REPRESENTATION CLAUSES

Concerning the descriptive features, the representation clauses are one of the most significant facilities offered by EAST. The representation clauses specify the mapping between the logical types of the language and their physical representation. EAST provides the length clauses, the enumeration representation clauses, and the record representation clauses.

A representation clause� XE "Representation clause" � immediately follows the type whose storage it describes. A representation clause is mandatory in a logical data description, except for variable� XE "Variable" �-sized components, for which the representation cannot be known.

Length Clause� XE "Length clause" �s

A length clause specifies the number of bits that data of a particular type occupy in storage. Length clause� XE "Length clause" �s must be provided for enumeration, integer, and real types. Length clauses must also be provided for composite types every time it is possible, i.e., every time the size of the composite type (array or record) is known. In such case, this size is the size of the whole type. Figure � REF Fig_Length_Clause * MERGEFORMAT �3-33� illustrates the syntax of a length clause declaration.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�33�: Length Clause� XE "Length clause" � Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�33�	Length Clause Specification Diagram"�

The following example presents type declarations with their associated length clauses:

type VALUE is range 0 .. 500;�for VALUE’size use 16; -- bits��type COLUMN is array(1 .. 10) of VALUE;�for COLUMN’size use 160; -- 10 times 16 bits

Example �SEQ chapitre \c�3�-�SEQ exemple�19�: Length Clause� XE "Length clause" � Declarations �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�19�	Length Clause Declarations"�

If the elements of the described array are not contiguous, the unused space between elements must be described explicitly. This results in contiguous elements containing unused space.

The following example presents an array which contains values and spare fields (for alignment purpose).

type VALUE is range 0 .. 500;�for VALUE’size use 16; -- bits��type OCTET is range 0 .. 255;

for OCTET’size use 8;

type SPARE is array (1 .. 2) of OCTET;

for SPARE’size use 16;��type ELEMENT is record

	A_VALUE: VALUE;

	A_SPARE: SPARE;

end record;

for ELEMENT’size use 32;��type COLUMN is array(1 .. 10) of ELEMENT;�for COLUMN’size use 320; -- 10 times 32 bits

Example �SEQ chapitre \c�3�-�SEQ exemple�20�: Explicit Description of Unused Space �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�20�	Explicit Description of Unused Space"�

Enumeration Representation� XE "Enumeration representation clause" � Clause� XE "Representation clause" �s

An enumeration representation clause specifies the bit pattern for the binary representation of the value associated with each literal of an enumeration type. An enumeration representation clause is optional.

If an enumeration representation clause is provided, each literal of the enumeration type must be provided with a unique bit pattern. The integer values (corresponding to the given bit pattern) specified for the enumeration type must satisfy the predefined ordering relation of the type; i.e., they must increase.

If no enumeration representation clause is provided for a binary enumeration type, default integer codes are presumed: the value of the first listed enumeration literal is zero; the value for each other enumeration literal is one more than for its predecessor in the list.

Figure � REF Fig_Enumeration_Clause * MERGEFORMAT �3-34� illustrates the syntax of an enumeration representation clause declaration:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�34�: Enumeration Clause Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�34�	Enumeration Clause Specification Diagram"�

The integer value, specifying the mapping with bit pattern, can be expressed using the binary, octal, decimal or hexadecimal notation. The syntax for a binary, octal, or hexadecimal value is: base # value#.

type CODE is (ADD , SUB , MUL , LDA , STA , STZ);�for CODE use (ADD => 2#1#, SUB => 2#10#, �	MUL => 2#11#, LDA => 2#1000#,�	STA => 2#11000#, STZ => 2#11111#);��type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);�for DAY use (MON => 8#1#, TUE => 8#2#, WED => 8#3#, �	THU => 8#4#, FRI => 8#5#, SAT => 8#6#, SUN => 8#7#);��type STATE is (OFF , ON);�for STATE use (OFF => 0 , ON => 1);��type SYNCHRONIZATION is (NOMINAL_SYNCHRO , INVERSE_SYNCHRO);�for SYNCHRONIZATION use (NOMINAL_SYNCHRO => 16#0C# ,�		INVERSE_SYNCHRO => 16#F5#);

Example �SEQ chapitre \c�3�-�SEQ exemple�21�: Enumeration Clause Declarations �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�21�	Enumeration Clause Declarations"�

Record Representation Clause� XE "Record representation clause" �� XE "Representation clause" �s

A record representation clause specifies the storage representation of records, that is, the order, position, and size of record components (including discriminants, if any).

A record representation clause occurs immediately after the record type definition and before the record length clause (if its size is known).

A component clause specifies the storage position of a component, relative to the beginning of the record. A component clause must be provided every time it is possible, i.e., every time the exact location of the component is known (e.g., it is not possible for variable� XE "Variable" �-sized components).

If component clauses are given for all components, the record representation clause completely specifies the representation of the record type.

If some component clauses are missing, the order of these components is specified as in the record type definition.

The order of component clauses in a record representation clause is not significant.

A representation clause is mandatory for a discriminant� XE "Discriminant" �, except for virtual� XE "Virtual discriminant" � discriminants which cannot have a representation clause.

There is an overlap between distinct variants. The EAST syntax requires that a variant� XE "Variant" � part is declared after the fixed part of a record. If the variant part has a constant� XE "Constant" � length, fixed components are allowed to be physically located after the alternative components of the variant: the actual location of the fixed components is specified using a record representation clause.

Figure � REF Fig_Component_Clause * MERGEFORMAT �3-35� illustrates the syntax of a component representation. The expression after the keyword at indicates a relative distance� XE "Distance" � to the start of the structure. This distance is expressed in words, the length of a word being either 16 bits or 32 bits (see page � PAGEREF Distance �3-39� for the declaration of the length). If distance is equal to 0, the range is specified relatively to the beginning (i.e., location 0) of the record. The expressions after the keyword range are the positions in bits relatively to the distance.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�35�: Component Representation Clause� XE "Representation clause" � Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�35�	Component Representation Clause Specification Diagram"�

Figure � REF Fig_Record_Clause * MERGEFORMAT �3-36� illustrates the syntax of a record representation clause.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�36�: Record Representation Clause� XE "Record representation clause" �� XE "Representation clause" � Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�36�	Record Representation Clause Specification Diagram"�

The next four examples illustrate the use of record representation clauses, in different cases:

�SYMBOL 45 \f "Symbol"�	first case: everything is known (the size and the location of every component);

�SYMBOL 45 \f "Symbol"�	second case: the number of elements of a component is not known at definition time, and the size and the location of this variable� XE "Variable" � component are therefore not known;

�SYMBOL 45 \f "Symbol"�	third case: the global size of the record is known, but there are two alternatives for the choice of the components;

�SYMBOL 45 \f "Symbol"�	fourth case: the record contains alternatives for the choice of the components, followed by a fixed (i.e., known) component.

Assuming the following definitions of the basic data types used in the four examples:

-- enumeration type definition�type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);�for DAY’size use 8;��-- integer type� XE "Integer type" � definitions�type MONTH is range 1 .. 12;�for MONTH’size use 8;�type YEAR is range 1900 .. 2100;�for YEAR’size use 16;�type NUMBER is range 1 .. 10;�for NUMBER’size use 8;�type ALPHA is range 1 .. 10;�for ALPHA’size use 8;�type BETA is range 1 .. 10;�for BETA’size use 8;�type GAMMA is range 1 .. 10;�for GAMMA’size use 8;�type DELTA is range 1 .. 10;�for DELTA’size use 8;��-- real type definition�type VALUE is digits 5;�for VALUE’size use 32;��-- array type definition�type VECTOR is array(NUMBER range <>) of VALUE;

Example �SEQ chapitre \c�3�-�SEQ exemple�22�: Type Definitions �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�22�	Type Definitions"�

The following example presents the case of a complete record representation clause. The record representation clause is provided because the size and the location of every component of the data structure are known.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�37�: First Tree Structure �TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�37�	First Tree Structure"�

This tree structure is described using the following declaration:

type FIRST_RECORD is record�	THE_DAY_OF_MONTH: DAY;�	THE_MONTH: MONTH;�	THE_YEAR: YEAR;�	THE_MEASUREMENT: VALUE;�end record;�for FIRST_RECORD use record�	THE_DAY_OF_MONTH at 0 range 0 .. 7;�	THE_MONTH at 0 range 8 .. 15;�	THE_YEAR at 0 range 16 .. 31;�	THE_MEASUREMENT at 0 range 32 .. 63;�end record;�for FIRST_RECORD’size use 64; �� 64 bits

Example �SEQ chapitre \c�3�-�SEQ exemple�23�: Complete Record Representation Clause� XE "Record representation clause" �� XE "Representation clause" � Declaration �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�23�	Complete Record Representation Clause Declaration"�

The following example presents the case of an incomplete record representation clause.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�38�: Second Tree Structure �TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�38�	Second Tree Structure"�

The number of measurements is not known at definition time. The size of the vector of measurements is therefore not provided. The tree structure is described using the following declarations:

type SECOND_RECORD(THE_NUMBER: NUMBER := 1) is record�	THE_YEAR: YEAR;�	THE_MEASUREMENT: VECTOR(1 .. THE_NUMBER);�	THE_MONTH: MONTH;�	THE_DAY_OF_MONTH: DAY;�end record;�for SECOND_RECORD use record�	THE_NUMBER at 0 range 0 .. 7;�	THE_YEAR at 0 range 8 .. 23;�	-- no component clause for the_measurement, �	-- for the_month nor for the_day_of_month�end record;�-- no length clause for SECOND_RECORD type

Example �SEQ chapitre \c�3�-�SEQ exemple�24�: Incomplete Record Representation Clause� XE "Record representation clause" �� XE "Representation clause" � Declaration �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�24�	Incomplete Record Representation Clause Declaration"�

In this example, the length of “the_measurement” depends on the value of the discriminant� XE "Discriminant" � “the_number”. No representation clause can be given for it. Nevertheless the size is determined by the expression “the_number times 32”, 32 being the size of the basic element VALUE. The component “the_measurement” begins at bit 24. The length of “the_month” is known but its location is not known at definition time. No representation clause can be given for it. The component “the_month” begins after the end of “the_measurement”. In the same way, the length of “the_day_of_month” is known, but its location is not known at definition time. No representation clause can be given for it. The component “the_DAY_OF_month” begins after the end of “the_month”.

The following example gives the case of a complete record representation clause, where some components overlap:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�39�: Third Tree Structure �TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�39�	Third Tree Structure"�

The size of the record is known at definition time: all the alternatives have the same length (32 bits if THE_DAY_OF_MONTH is equal MON, and 4*8 bits if THE_DAY_OF_MONTH is equal something else). The location of every component is known.

type THIRD_RECORD(THE_DAY_OF_MONTH: DAY := MON) is record�	THE_MONTH: MONTH;�	THE_YEAR: YEAR;�	case THE_DAY_OF_MONTH is�	 when MON =>�		THE_MEASUREMENT: VALUE; �� 32 bits�	 when others =>�		THE_ALPHA_VALUE: ALPHA; �� 8 bits�		THE_BETA_VALUE: BETA; -- 8 bits�		THE_GAMMA_VALUE: GAMMA; -- 8 bits�		THE_DELTA_VALUE: DELTA; -- 8 bits�	end case;�end record;�for THIRD_RECORD use record�	THE_DAY_OF_MONTH at 0 range 0 .. 7;�	THE_MONTH at 0 range 8 .. 15;�	THE_YEAR at 0 range 16 .. 31;�	THE_MEASUREMENT at 0 range 32 .. 63;�	THE_ALPHA_VALUE at 0 range 32 .. 39;	�	THE_BETA_VALUE at 0 range 40 .. 47;�	THE_GAMMA_VALUE at 0 range 48 .. 55;�	THE_DELTA_VALUE at 0 range 56 .. 63;�end record;�for THIRD_RECORD’size use 64; �� 64 bits

Example �SEQ chapitre \c�3�-�SEQ exemple�25�: Complete Record Representation Clause� XE "Record representation clause" �� XE "Representation clause" � Declaration �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�25�	Complete Record Representation Clause Declaration"�

NOTE	�SYMBOL 45 \f "Symbol"�	The components “THE_MEASUREMENT” and “THE_ALPHA_VALUE” cannot appear in the same record, so their storage locations can overlap.

The following example presents the case of a complete representation clause, where components and associated representation clauses are not declared in the same order:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�40�: Fourth Tree Structure �TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�40�	Fourth Tree Structure"�

The size of the record is known at definition time. The variant� XE "Variant" � part has a constant� XE "Constant" � length (32 bits). A fixed component is located after the variant part.

�type FOURTH_RECORD (THE_DAY_OF_MONTH: DAY := MON) is record�	THE_MONTH: MONTH;�	THE_YEAR: YEAR;�	case THE_DAY_OF_MONTH is�	 when MON =>�		THE_MEASUREMENT: VALUE; -- 32 bits�	 when others =>�		THE_ALPHA_VALUE: ALPHA; -- 8 bits�		THE_BETA_VALUE: BETA; -- 8 bits�		THE_GAMMA_VALUE: GAMMA; -- 8 bits�		THE_DELTA_VALUE: DELTA; -- 8 bits�	end case;�end record;�for FOURTH_RECORD use record�	THE_DAY_OF_MONTH at 0 range 0 .. 7;�	THE_MONTH at 0 range 8 .. 15;�	THE_MEASUREMENT at 0 range 16 .. 47;�	THE_ALPHA_VALUE at 0 range 16 .. 23;	�	THE_BETA_VALUE at 0 range 24 .. 31;�	THE_GAMMA_VALUE at 0 range 32 .. 39;�	THE_DELTA_VALUE at 0 range 40 .. 47;�	THE_YEAR at 0 range 48 .. 63;�end record;�for FOURTH_RECORD’size use 64; -- 64 bits

Example �SEQ chapitre \c�3�-�SEQ exemple�26�: Complete Record Representation Clause� XE "Record representation clause" �� XE "Representation clause" � Declaration �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�26�	Complete Record Representation Clause Declaration"�

The data item of the type YEAR is declared before the variant� XE "Variant" � part in the record type declaration, but after the variant part in the record representation clause declaration.

The four previous examples are an illustration of the following rules:

1	The reasons for not providing a component representation clause are: the component has a variable� XE "Variable" � size or it follows a component that has no component representation clause.

2	When no representation clause can be given for a component, its location is supposed to be contiguous to the previous component.

3	A fixed component is allowed after the variant� XE "Variant" � part if that part has a constant� XE "Constant" � length, i.e., if the location of the fixed component can be stated using a component representation clause.

The storage location of a component, relative to the start of the record, has been expressed until now in bits in the examples (the distance� XE "Distance" � has been set to 0). For large structures, the values of expressions given after the reserved word range can be huge.

The EAST syntax also allows one to express the relative position of a component in distance� XE "Distance" � to which a number of bits is added. For that purpose, EAST allows two units for the distance: WORD_16_BITS� XE "WORD_16_BITS" � and WORD_32_BITS� XE "WORD_32_BITS" �, representing respectively a 16-bit word and a 32-bit word.

WORD_16_BITS� XE "WORD_16_BITS" � and WORD_32_BITS� XE "WORD_32_BITS" � are two EAST predefined identifiers.

Distances are expressed in multiples of the selected unit as follows:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�41�: Distance� XE "Distance" � Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�41�	Distance Specification Diagram"�

NOTE	�SYMBOL 45 \f "Symbol"�	The integer decimal literal is the value of the distance� XE "Distance" � expressed in the selected unit, either word_32_bits� XE "WORD_32_BITS" � or word_16_bits� XE "WORD_16_BITS" �.

See below for the previous record representation clause written using the constant� XE "Constant" � WORD_32_BITS� XE "WORD_32_BITS" �� XE "WORD_32_BITS" �:

for THIRD_RECORD use record�	THE_DAY_OF_MONTH at 0 * WORD_32_BITS� XE "WORD_32_BITS" � range 0 .. 7;�	THE_MONTH at 0 * WORD_32_BITS range 8 .. 15;�	THE_YEAR at 0 * WORD_32_BITS range 16 .. 31;�	THE_MEASUREMENT at 1 * WORD_32_BITS range 0 .. 31;�	THE_ALPHA_VALUE at 1 * WORD_32_BITS range 0 .. 7;�	THE_BETA_VALUE at 1 * WORD_32_BITS range 8 .. 15;�	THE_GAMMA_VALUE at 1 * WORD_32_BITS range 16 .. 23;�	THE_DELTA_VALUE at 1 * WORD_32_BITS range 24 .. 31;�end record;

Example �SEQ chapitre \c�3�-�SEQ exemple�27�: Record Representation Clause� XE "Record representation clause" �� XE "Representation clause" � Using WORD_32_BITS� XE "WORD_32_BITS" � �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�27�	Record Representation Clause Using WORD_32_BITS"�

PHYSICAL DESCRIPTION

The physical description part adds implementation information to the logical part. While the logical part of the DDR describes the meaning of the exchanged data, the physical part describes how the data are physically implemented on the medium.

The machine-dependent characteristics include:

�SYMBOL 45 \f "Symbol"�	the representation of numerics;

�SYMBOL 45 \f "Symbol"�	the way of storing arrays on the medium;

�SYMBOL 45 \f "Symbol"�	the way of storing octets on the medium.

This physical part of the Data Description Record consists of a package� XE "Package" �. See below the content of the physical part of a DDR.

package� XE "Package" � physical_package_name is�����way of storing arrays (see � REF _Ref348238911 \n �3.3.1�)��������way of storing octets (see � REF _Ref348238924 \n �3.3.2�)��������actual scalar type representations (see � REF _Ref348238944 \n �3.3.3�)��������association of basic type names with their actual representations (see � REF _Ref348238968 \n �3.3.4�)���end physical_package� XE "Package" �_name ;����

The name of the physical package� XE "Package" � is an identifier� XE "Identifier" � (see � REF _Ref381585218 \n �3.1.3�) and must be different from the name of the package giving the associated logical description.

The physical description part has to be considered to be the instance of a template. Thus, the syntax used throughout this section is not justified or formally defined. An extended example of the template is provided in section � REF _Ref381698877 \n �3.3.5�. The next sections (� REF _Ref381581927 \n �3.3.1� to � REF _Ref381581945 \n �3.3.4�) explain the content of the template. Each time a declaration of the template must be used as it is, it is called “fixed part of the physical description” as opposed to the declarations that change from a description to another one.

Every part of the template is optional (see � REF _Ref381698877 \n �3.3.5�). There is no required ordering between the different parts of the template.

WAY OF STORING ARRAYS

An array object� XE "Object" � on a medium consists of a sequence of components. For a multi-dimensional array, i.e., an array with more than one index� XE "Index" � range, there are different ways to organize the sequence: either the first index range varies first or the last index range varies first. The first described way of storing arrays is called first_index_first, and the second one is called last_index_first.

The way of storing arrays on the medium is described in the physical description by using an enumeration type. See below the corresponding declaration:

type ARRAY_STORAGE_METHOD is (FIRST_INDEX_FIRST, �						LAST_INDEX_FIRST);

Fixed Part �SEQ chapitre \c�3�-�SEQ fixe�1� of the Physical Description� XE "Physical description" �: Array Storage Method� XE "Array storage method" �

Using this declaration, it is necessary to declare the actual way of storing arrays, for example:

ARRAY_STORAGE: constant� XE "Constant" � ARRAY_STORAGE_METHOD := �						FIRST_INDEX_FIRST;

Example �SEQ chapitre \c�3�-�SEQ exemple�28�: Actual Array Storage Method� XE "Array storage method" � �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�28�	Actual Array Storage Method"�

This declaration is applicable to the whole description.

By default, the array storage is FIRST_INDEX_FIRST.

WAY OF STORING OCTETS/BITS

The way of storing octets/bits determines the location of the Most Significant Bit (MSB) and the Least Significant Bit (LSB) of a data element.

A machine is said to be big-endian or little-endian depending on whether the MSB is in the lowest or highest addressed octet of the data element.

For a big-endian representation of a multi-octet data element, the MSB is in the first transmitted octet, i.e., in the first octet on the medium, while it is in the last transmitted octet, i.e., in the last octet on the medium, for a little-endian representation of a multi-octet data element.

The big-endian representation for a data element can be viewed as storing the bits from most to LSB order, and then keeping this same order when output to some medium.

The little-endian representation for a data element can be viewed as storing the bits from least to MSB order, but then re-ordering the bits (from most to least significant) within each octet when output to some medium.

This machine-dependent characteristic is very important for a correct interpretation of the data. Its definition is given for multi-octet data elements, but is still applicable for every data element, whatever its length and its position (on octet boundary or not) within the data set.

The following example presents the transmission of data elements for both kinds of machines.

Logically we have:���A

2 bits�B

3 bits�C

16 bits�D

n bits����A1�A2�B1�B2�B3�C1�C2�C3�C4�.................................�C13�C14�C15�C16�D1�D2�.........�Dn���

When writing onto a medium, the machine writes the bits of the current octet first so that the contained data element bits are ordered from MSB to LSB while maintaining their relative bit positions to one another.

Therefore, for a big-endian machine where the bits are stored MSB first, the bit values in memory appear as follows:���A1�A2�B1�B2�B3�C1�C2�C3�C4�............C11.....�C13�C14�C15�C16�D1�D2�...�Dn����21�20�22�21�20�215�214�213�212�.............25......�23�22�21�20�2n-1�2n-2�...�20�������The bits are transmitted towards the medium octet by octet in the following order:

A1 A2 B1 B2 B3 C1 C2 C3 then C4 C5 C6 ... C11 then C12 C13 ... D1 D2 D3 and so forth.

For a little-endian machine where the bits are stored LSB first, the bit values in memory appear as follows:���A1�A2�B1�B2�B3�C1�C2�C3�C4�..............C11...�C13�C14�C15�C16�D1�D2�...�Dn����20�21�20�21�22�20�21�22�23�..............210...�212�213�214�215�20�21�...�2n-1�������The bits are transmitted towards the medium octet by octet in the following order:

C3 C2 C1 B3 B2 B1 A2 A1 then C11 C10 C9 ... C4 then D3 D2 D1 C16 ... C12 and so forth.��

Example �SEQ chapitre \c�3�-�SEQ exemple�29�: Octet Storage Possibilities�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�29� Octet Storage Possibilities	"�

See below the corresponding declaration:

type BIT_ORDER is (HIGH_ORDER_FIRST,	-- big-endian representation�	LOW_ORDER_FIRST);	-- little-endian representation

Fixed Part �SEQ chapitre \c�3�-�SEQ fixe�2� of the Physical Description� XE "Physical description" �: Bit Order

Using this declaration, it is necessary to declare the actual way of storing octets, for example:

OCTET_STORAGE: constant� XE "Constant" � BIT_ORDER := HIGH_ORDER_FIRST;

Example �SEQ chapitre \c�3�-�SEQ exemple�30�: Actual Bit Order �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�30�	Actual Bit Order"�

This declaration is applicable to the whole description.

The description of the way of storing octets (using the type BIT_ORDER) is sufficient to fully describe the organization on the medium (even at a bit level).

By default, the octet storage is HIGH_ORDER_FIRST.

REPRESENTATION OF SCALAR TYPES

Scalar types can be either binary encoded or ASCII encoded.

Binary Rep� XE "Binary Representation" �resentation of Scalar Types

The way to determine the value of a numeric (integer or real), i.e., how to interpret its bit pattern on the medium, depends on its binary representation.

The binary representation of a numeric indicates its bit pattern on the medium. It includes the physical characteristics that may differ depending on the machine that has generated the numeric.

No binary representation is provided for enumeration types, because they are mapped on integers, for which the location of the bits from the MSB to the LSB are deduced from another physical information item, called bit order (see � REF _Ref348239020 \n �3.3.2�). If necessary, negative values are represented in a two’s complement form.

If a negative value is present in the enumeration list, then the sign bit is present in any data occurrence of the enumeration type. If the sign bit is set, the two’s complement shall be used to decode the integer value.

If all enumeration values are positive integers, then there is no sign bit and any data occurrence of the enumeration must be considered to be an unsigned integer.

The binary representation of an integer includes the following characteristics:

�SYMBOL 45 \f "Symbol"�	the sign convention, which indicates the complementation, if any;

�SYMBOL 45 \f "Symbol"�	the bit ordering, which indicates the location of MSB to the LSB, the sign position, if any, being the MSB.

The binary representation of a real includes the following characteristics:

�SYMBOL 45 \f "Symbol"�	the sign position;

�SYMBOL 45 \f "Symbol"�	the sign convention, if any;

�SYMBOL 45 \f "Symbol"�	the location of the exponent;

�SYMBOL 45 \f "Symbol"�	the bias, which is a constant� XE "Constant" � chosen to make the sum of exponent value and bias which is a non-negative number;

�SYMBOL 45 \f "Symbol"�	the exponent base, which is the integer (two, ten or sixteen) raised to the exponent power in determining the value of the represented number;

�SYMBOL 45 \f "Symbol"�	the location of the mantissa.

It must additionally include the identifier of the convention of the generating machine, “convention of the generating machine” being the method to reconstitute the real values from the previously defined characteristics. An Authority and Description Identifier� XE "Identifier" � (ADID) is associated with every registered convention. See reference � REF Ref_EAST_Conventions * MERGEFORMAT �[E5]� for the list of conventions and related ADIDs.

The conventions adopted in this document for the data representation on a medium are the following:

�SYMBOL 45 \f "Symbol"�	In multi-octet elements, the first octet is drawn in the leftmost position and is called “Octet Zero”. Successive octets are assigned successively larger numbers.

�SYMBOL 45 \f "Symbol"�	Within an octet or binary field (not a multiple of octets), the first bit is drawn in the leftmost position and is called “Bit Zero”.

The following rule is applicable for a field representing an integer, an exponent or a mantissa of a real: the bits of the field are not necessarily provided in the right order (MSB to LSB) on the medium. The aim is to reconstitute the proper bit ordering (MSB to LSB). To achieve that, the initial field might be divided into an ordered sequence of subfields for which the bit ordering is respected in each of them. The order of the subfields provides the order of bits from the MSB to the LSB of the whole field.

Bit number�0�1�2�3�4�5�6�7�8�9��������������Significance�26�25�24�23�22�29�28�27�21�20��The bit ordering for this field from the MSB to LSB is: 5-6-7-0-1-2-3-4-8-9. This can be summarized using the previous rule in 3 subfields according to the bit numbers in the following order: (5 , 7) - (0 , 4) - (8 , 9).

Example �SEQ chapitre \c�3�-�SEQ exemple�31�: Bit Ordering �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�31�	Bit Ordering"�

Using the previous conventions and rules, the binary representation of numerics is described in the corresponding physical description part. It contains:

�SYMBOL 45 \f "Symbol"�	a fixed part declaring the types used to describe the representations (INTEGER_PHYSICAL_DESCRIPTION and REAL_PHYSICAL_DESCRIPTION), this part being always the same and present in any physical description part;

�SYMBOL 45 \f "Symbol"�	a part declaring the actual representations used, i.e., a specific part, depending on the nature of the numerics to be described.

type NATURAL_NUMBER is range 0 .. 65535;��type LOCATION_OF_SUBFIELD is	-- subfields composing an integer or the �record					-- exponent/mantissa of a real.�	BEGINNING_AT_BIT_NUMBER: NATURAL_NUMBER;�	ENDING_AT_BIT_NUMBER: NATURAL_NUMBER;�end record;��MAXIMUM_NUMBER_OF_SUBFIELDS: constant� XE "Constant" � := 255;�type SUBFIELD_NUMBER is range�	1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;��type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>) �	of LOCATION_OF_SUBFIELD;

Fixed Part �SEQ chapitre \c�3�-�SEQ fixe�3� of the Physical Description� XE "Physical description" �: Location of Fields for Numerics

NOTES

1	The MAXIMUM_NUMBER_OF_SUBFIELDS is set to 255. It is an arbitrary value that is big enough to cover all the identified machine architectures (i.e., the number of subfields that are necessary to locate the bits of an integer can be up to 255).

2	The upper bound of NATURAL_NUMBER is set to 65535. It is an arbitrary value that seems to be large enough in this context.

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE, �	ONES_COMPLEMENT, TWOS_COMPLEMENT);��type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000, FCSTC001, �	FCSTC0002, FCSTC0003); -- this list is not exhaustive (see reference � REF Ref_EAST_Conventions * MERGEFORMAT �[E5]�)��type INTEGER_PHYSICAL_DESCRIPTION (�	number_of_subfields: SUBFIELD_NUMBER := 1) is record�	COMPLEMENT: SIGN_CONVENTION;�	LOCATION: LOCATION_OF_FIELD (1 .. number_of_subfields);�end record;��type REAL_PHYSICAL_DESCRIPTION(�	number_of_subfields_in_exponent: SUBFIELD_NUMBER := 1;�	number_of_subfields_in_mantissa: SUBFIELD_NUMBER := 1) �is record�	CONVENTION_USED: LIST_OF_RECOGNIZED_CONVENTIONS;�	SIGN_BIT_NUMBER: NATURAL_NUMBER;�	COMPLEMENT: SIGN_CONVENTION;�	EXPONENT_BASE: NATURAL_NUMBER;�	BIAS: NATURAL_NUMBER;�	LOCATION_OF_EXPONENT: LOCATION_OF_FIELD (�		1 .. number_of_subfields_in_exponent);�	LOCATION_OF_MANTISSA: LOCATION_OF_FIELD (�		1 .. number_of_subfields_in_mantissa);�end record;

Fixed Part �SEQ chapitre \c�3�-�SEQ fixe�4� of the Physical Description� XE "Physical description" �: Binary Description for Numerics

Each time the bits of an integer or the bits of the exponent or mantissa are not contiguously located on the medium from the MSB to the LSB (see Example 3-31), several subfields are necessary to locate the bits. In these cases, BEGINNING_AT_BIT_NUMBER of the first element of the array LOCATION_OF_FIELD is supposed to be the bit number of the MSB. Bit numbers continue in sequence until ENDING_AT_BIT_NUMBER of the last element of LOCATION_OF_FIELD, which is supposed to be the bit number of the LSB.

The actual representation of the numerics is given by the declaration of constants of the previous record types (INTEGER_PHYSICAL_DESCRIPTION for the representation of integers and REAL_PHYSICAL_DESCRIPTION for the representation of reals).

The actual representation of a numeric is therefore provided by a record value (i.e., the value of the constant of the relevant record type: INTEGER_PHYSICAL_DESCRIPTION or REAL_PHYSICAL_DESCRIPTION).

Figure � REF Fig_Record_Value * MERGEFORMAT �3-42� illustrates the syntax of a record value.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�42�: Record Value Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�42�	Record Value Specification Diagram"�

In the case of the record types used in the physical part of an EAST description, the component value is either an enumeration literal, an integer literal or an array value.

Figure � REF Fig_Array_Value * MERGEFORMAT �3-43� illustrates the syntax of an array value.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�43�: Array Value Specification Diagram�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�43�	Array Value Specification Diagram"�

The index� XE "Index" � value is an integer literal. In the case of the array types used in the physical part of an EAST description, the component value is either an enumeration literal, an integer literal, an array value, or a record value.

The following examples present real cases of two integers and a real that must be described.

A 16-bit signed integer with the following physical representation (big-endian representation):

0 7��8 15���octet 0��octet 1��� �SYMBOL 175 \f "Symbol"� 214��20���	Sign

�SYMBOL 45 \f "Symbol"�	The sign position is bit 0.

�SYMBOL 45 \f "Symbol"�	The bit ordering is (0,15), which means that the MSB is bit 1 (bit 0 being the sign bit) and the LSB is bit 15.

Example �SEQ chapitre \c�3�-�SEQ exemple�32�: Bit Ordering for the Above 16-Bit Signed Integer �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�32�	Bit Ordering for the Above 16-Bit Signed Integer"�

Using the types declared in the fixed part of the physical description, it is possible to declare the actual binary representation of this integer. Assuming that for negative values the two’s complement is used, the actual binary representation is given by the following declaration:

Binary_Representation_01:	constant� XE "Constant" � INTEGER_PHYSICAL_DESCRIPTION := �		(number_of_subfields => 1 ,�		COMPLEMENT => TWOS_COMPLEMENT,�		LOCATION => (1 => (0,15)));

Example �SEQ chapitre \c�3�-�SEQ exemple�33�: Actual Binary Rep� XE "Binary Representation" �resentation of the Above 16-Bit Signed Integer �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�33�	Actual Binary Representation of the Above 16-Bit Signed Integer"�

In this example, the binary representation indicates that the sign bit is the first bit encountered (bit 0). Then, a less significant bit is the second bit encountered (bit 1) and so on till the sixteenth bit (this bit being the LSB of the integer).

In the same way, a 16-bit unsigned integer with the following physical representation (big-endian representation):

0 7��8 15���octet 0��octet 1��� 215��20���

�SYMBOL 45 \f "Symbol"�	The bit ordering is (0,15), which means that the MSB is bit 0 and LSB is bit 15.

Example �SEQ chapitre \c�3�-�SEQ exemple�34�: Bit Ordering for the Above 16-Bit Unsigned Integer �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�34�	Bit Ordering for the Above 16-Bit Unsigned Integer"�

Using the types declared in the fixed part of the physical description, it is possible to declare the actual binary representation of this integer. The actual binary representation is given by the following declaration:

Binary_Representation_02:	constant� XE "Constant" � INTEGER_PHYSICAL_DESCRIPTION := �		(number_of_subfields => 1 ,�		COMPLEMENT => UNSIGNED,�		LOCATION => (1 => (0,15)));

Example �SEQ chapitre \c�3�-�SEQ exemple�35�: Actual Binary Rep� XE "Binary Representation" �resentation of the Above 16-Bit Unsigned Integer �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�35�	Actual Binary Representation of the Above 16-Bit Unsigned Integer"�

In this example, the binary representation indicates that the most significant is the first bit encountered (bit 0). Then, a less significant bit is the second bit encountered (bit 1) and so on until the sixteenth bit (this bit being the LSB of the integer).

If the range that is specified in the integer type� XE "Integer type" � definition (in the logical part of the EAST description) allows negative values, then there is a sign bit, and the SIGN_CONVENTION cannot be UNSIGNED. If this range specifies only positive values, then there can be a sign bit (or not) according to the SIGN_CONVENTION. If there is no sign bit, the first bit number of the first subfield really corresponds to the MSB.

A 32-bit real with the following physical representation (little-endian representation):

0 7��8 15��16 23��24 31���octet 0��octet 1��octet 2��octet 3����SYMBOL 172 \f "Symbol"� Mantissa �SYMBOL 174 \f "Symbol"����SYMBOL 172 \f "Symbol"� Mantissa �SYMBOL 174 \f "Symbol"����SYMBOL 175 \f "Symbol"� �SYMBOL 172 \f "Symbol"� Mantissa �SYMBOL 174 \f "Symbol"��Exponent���SYMBOL 175 \f "Symbol"� �SYMBOL 172 \f "Symbol"� Exponent �SYMBOL 174 \f "Symbol"��Sign���

�SYMBOL 45 \f "Symbol"�	The sign position is bit 24.

�SYMBOL 45 \f "Symbol"�	The location of the exponent includes two subfields (25,31) and (16,16), which means that the MSB of the exponent is bit 25 and the LSB is bit 16.

�SYMBOL 45 \f "Symbol"�	The location of the mantissa includes three subfields (17,23), (8,15) and (0,7), which means that the MSB of the mantissa is bit 17 and the LSB is bit 7.

Example �SEQ chapitre \c�3�-�SEQ exemple�36�: Bit Ordering for the Above 32-Bit Real �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�36�	Bit Ordering for the Above 32-Bit Real "�

Using the types declared in the fixed part of the physical description, it is possible to declare the actual binary representation of this real. Assuming that the real is generated on a PC (which uses the IEEE 754 convention, identified by FCSTC000, see reference� REF Ref_EAST_Conventions * MERGEFORMAT �[E5]�), the actual binary representation is given by the following declaration:

Binary_Representation_03:	constant� XE "Constant" � REAL_PHYSICAL_DESCRIPTION :=�		(number_of_subfields_in_exponent => 2, �		number_of_subfields_in_mantissa => 3, �		CONVENTION_USED => FCSTC000, -- IEEE 754 �		SIGN_BIT_NUMBER => 24, �		COMPLEMENT => SIGN_AND_MAGNITUDE, �		EXPONENT_BASE => 2, �		BIAS => 127, �		LOCATION_OF_EXPONENT => (1 => (25,31), �							2 => (16,16)), �		LOCATION_OF_MANTISSA => (1 => (17,23), �							2 => (8,15),�							3 => (0,7)));

Example �SEQ chapitre \c�3�-�SEQ exemple�37�: Actual Binary Rep� XE "Binary Representation" �resentation of a 32-Bit Real �TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�37�	Actual Binary Representation of a 32-Bit Real "�

In this example, the binary representation indicates that the most significant bit of the exponent is the twenty-sixth bit encountered (bit 25). Then from bit 26 through bit 31 the bits encountered are less significant, and bit 16 is the LSB of the exponent.

In the same way, the most significant bit of the mantissa is the eighteenth bit encountered (bit 17). Then from bit 18 through bit 23, and then from bit 8 through bit 15, and from bit 0 through bit 7, the bits encountered are less significant, bit 7 being the LSB of the mantissa.

NOTE	�SYMBOL 45 \f "Symbol"�	The name of the constant� XE "Constant" � used to identify the binary representation (Binary_Representation_01 or Binary_Representation_02) could be any identifier� XE "Identifier" � (except a reserved keyword). The only restriction is that a constant identifier cannot be defined twice in the physical part.

Reference � REF Ref_EAST_Conventions * MERGEFORMAT �[E5]� provides the way of calculating real values for the conventions, mentioned in the definition of LIST_OF_RECOGNIZED_CONVENTIONS.

ASCII Rep� XE "ASCII Representation" �resentation of Scalar Type� XE "Scalar type" �s

ASCII encoded types are sometimes used to increase the portability of the data. Enumeration type� XE "Enumeration type" �s, integer type� XE "Integer type" �s, and real types can be encoded using character strings. An ASCII encoded type is a character string type with a specific format, depending on the nature of the type (enumeration, integer, or real).

There is no difference (except the size) between the logical description of a binary type and the logical description of an ASCII encoded type. The physical description specifies the actual representation of the scalar types. By default, a type is a binary encoded type. An ASCII rep� XE "ASCII Representation" �resentation must be associated with the type name, if the type is ASCII encoded.

The ASCII rep� XE "ASCII Representation" �resentation of an enumeration type provides all the character strings associated with all the enumeration literals of the type. The character strings, which are the coding values of the enumeration type, have all the same length (NUMBER_OF_CHARACTERS). The set of the coding values is therefore represented by a character string list, which is also an array of characters, dimensioned by the NUMBER_OF_OCCURRENCES of the enumeration type and the NUMBER_OF_CHARACTERS of every occurrence.

The ASCII rep� XE "ASCII Representation" �resentation of an enumeration uses the following types:

type STRING_LIST is array(NATURAL_NUMBER range <>,�	NATURAL_NUMBER range <>) of CHARACTER;

type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION (�	NUMBER_OF_OCCURRENCES: NATURAL_NUMBER := 0;�	NUMBER_OF_CHARACTERS: NATURAL_NUMBER := 0) is record�	REPRESENTATION: STRING_LIST (1 .. NUMBER_OF_OCCURRENCES, �		1 .. NUMBER_OF_CHARACTERS);

end record;

Fixed Part �SEQ chapitre \c�3�-�SEQ fixe�5� of the Physical Description� XE "Physical description" �: ASCII Description for Enumeration Type� XE "Enumeration type" �s

The number of characters used to encode the enumeration type must be the same for every enumeration literal of the type. This number is known at definition time.

All characters (i.e., the 256 characters of the Latin Alphabet No. 1.—see reference � REF Ref_Latin_1 * MERGEFORMAT �[1]� and/or annex � REF _Ref348234536 \n �0�) are allowed and are significant, including the space character.

The physical representations of the enumeration literals are provided in the order of their declaration in the logical part.

An enumeration type is either an ASCII encoded type (in this case, its ASCII rep� XE "ASCII Representation" �resentation shall be present in the physical description part) or a binary encoded type (in this case, an enumeration representation clause can be present in the logical description part). In any case, enumeration representation clause and ASCII representation are exclusive: they must not be associated with the same enumeration type.

Using the types declared in the fixed part of the physical description, it is possible to declare the actual ASCII rep� XE "ASCII Representation" �resentation of the enumeration types.

For example, an enumeration type which has two permitted values: “WORKING” and “IDLE”, identifying a process, can be described in the logical part as follows:

type PROCESS_IDENTIFICATION is (WORKING, IDLE);�for PROCESS_IDENTIFICATION’size use 56; -- bits, i.e., 7 characters

Example �SEQ chapitre \c�3�-�SEQ exemple�38�: ASCII Enumeration Type� XE "Enumeration type" � Logical Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�38�	ASCII Enumeration Type Logical Declaration"�

and in the physical part as follows:

ASCII_Rep_01: constant� XE "Constant" � ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_OCCURRENCES => 2, NUMBER_OF_CHARACTERS => 7,�	REPRESENTATION => (“WORKING” , “IDLE ”));

Example �SEQ chapitre \c�3�-�SEQ exemple�39�: ASCII Enumeration Type� XE "Enumeration type" � Physical Description�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�39�	ASCII Enumeration Type Physical Description"�� XE "Physical description" �

In this example, three space characters belong to the representation of the enumeration value IDLE.

An ASCII Encoded Decimal Integer is a character string representing an integer value. The format of the character string corresponding to an ASCII encoded decimal integer is described in the Figure � REF Fig_ASCII_Integer_Format * MERGEFORMAT �3-44�:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-�SEQ figure�44�: ASCII Encoded Decimal Integer Format�TC \f G "�SEQ chapitre \c�3�-� SEQ figure\c�44�	ASCII Encoded Decimal Integer Format"�

An ASCII Encoded Decimal Real is a string representing a real value. The format of the character string corresponding to an ASCII encoded decimal real is described in the Figure � REF Fig_ASCII_Real_Format * MERGEFORMAT �3�45�:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3���SEQ figure�45�: ASCII Encoded Decimal Real Format�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�45�	ASCII Encoded Decimal Real Format"�

A digit is one of the following characters: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’.

Only the normalized ASCII encoded numbers can be described using EAST. There is no convention for the ASCII rep� XE "ASCII Representation" �resentation of infinite values (“+INF”, “-INF” or “+ �SYMBOL 165 \f "Symbol"�”, “- �SYMBOL 165 \f "Symbol"�”) and no representation for “NaN” (Not a Number).

The ASCII rep� XE "ASCII Representation" �resentation of an integer or real type specifies the number of characters used for the integer or real values. The ASCII representation of an integer or real uses the following type:

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record�	NUMBER_OF_CHARACTERS: NATURAL_NUMBER;�end record;

Fixed Part �SEQ chapitre \c�3�-�SEQ fixe�6� of the Physical Description� XE "Physical description" �: ASCII Description for Numerics

Using the types declared in the fixed part of the physical description, it is possible to declare the actual ASCII rep� XE "ASCII Representation" �resentation of the numerics.

For example, a five-character ASCII decimal integer type� XE "Integer type" � can be described in the logical part as follows:

type COUNTER is range -1 .. 16383;�for COUNTER’size use 40; -- bits, i.e., 5 characters

Example �SEQ chapitre \c�3�-�SEQ exemple�40�: ASCII Integer Type Logical Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�40�	ASCII Integer Type Logical Declaration"�

and in the physical part as follows:

ASCII_Rep_02: constant� XE "Constant" � ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_CHARACTERS => 5);

Example �SEQ chapitre \c�3�-�SEQ exemple�41�: ASCII Integer Type Physical Description�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�41�	ASCII Integer Type Physical Description"�� XE "Physical description" �

For example, an 11-character ASCII decimal real type can be described in the logical part as follows:

type KILOMETERS is digits 5;�for KILOMETERS’size use 88; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple�42�: ASCII Real Type� XE "Real type" � Logical Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�42�	ASCII Real Type Logical Declaration"�

and in the physical part as follows:

ASCII_Rep_03: constant� XE "Constant" � ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_CHARACTERS => 11);

Example �SEQ chapitre \c�3�-�SEQ exemple�43�: ASCII Real Type� XE "Real type" � Physical Description�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�43�	ASCII Real Type Physical Description"�� XE "Physical description" �

NOTE	�SYMBOL 45 \f "Symbol"�	The name of the constant� XE "Constant" � used to identify the ASCII rep� XE "ASCII Representation" �resentation (ASCII_Rep_01 or ASCII_Rep_02 or ASCII_Rep_03) could be any identifier� XE "Identifier" � (except a reserved keyword). The only restriction is that a constant identifier cannot be defined twice in the physical part.

RELATIONSHIP BETWEEN THE REPRESENTATION OF SCALAR TYPES AND LOGICAL TYPES

As seen in � REF _Ref348239194 \n �3.3.3�, a binary or ASCII rep� XE "ASCII Representation" �resentation is provided for some basic types (enumeration, integer, or real types) defined in the logical part of the DDR. The association of a type name with the corresponding representation name also has to be provided in this physical description part. See below how this association is implemented in EAST:

�SYMBOL 45 \f "Symbol"�	an enumeration type gives all the basic type names, which are previously defined in the logical description part and which need a physical representation, by prefixing them with “USER_TYPE_”:

type BASIC_TYPE_NAMES is (USER_TYPE_xxx , USER_TYPE_yyy , �			USER_TYPE_zzz, USER_TYPE_ttt);

�SYMBOL 45 \f "Symbol"�	the different representations are declared as seen in � REF _Ref348236555 \n �3.3.3.1� and � REF _Ref348239238 \n �3.3.3.2�:

Binary_Representation_01: constant INTEGER_PHYSICAL_DESCRIPTION �		:= “value”; -- integer type�Binary_Representation_02: constant REAL_PHYSICAL_DESCRIPTION �		:= “value”; -- real type�ASCII_Representation_01: constant �		ASCII_NUMERIC_PHYSICAL_DESCRIPTION�		:= “value”; -- integer or real type�ASCII_Representation_02: constant �		ASCII_ENUMERATION_PHYSICAL_DESCRIPTION�		:= “value”; -- enumeration type�... and so forth ...

�SYMBOL 45 \f "Symbol"�	finally, the relation between the type names and their binary representations is specified as follows:

type RELATION(choice: BASIC_TYPE_NAMES) is record�	case choice is�		when USER_TYPE_xxx =>�		PHYS_xxx: INTEGER_PHYSICAL_DESCRIPTION �			:= Binary_Representation_01;�		when USER_TYPE_yyy =>�		PHYS_yyy: REAL_PHYSICAL_DESCRIPTION �			:= Binary_Representation_02;�		when USER_TYPE_zzz =>�		PHYS_zzz: ASCII_NUMERIC_PHYSICAL_DESCRIPTION�			:= ASCII_Representation_01;�		when USER_TYPE_ttt =>�		PHYS_ttt: ASCII_ENUMERATION_PHYSICAL_DESCRIPTION�			:= ASCII_Representation_02;�		and so forth ...�	end case;�end record;

TEMPLATE OF A PHYSICAL DESCRIPTION PART

This subsection gives an extended template for the physical description part definition. The italicized part corresponds to the variable� XE "Variable" � part of the description, i.e., what changes from a physical part to another physical part.

package� XE "Package" � physical_package_name is��type ARRAY_STORAGE_METHOD is (FIRST_INDEX_FIRST, �				LAST_INDEX_FIRST);�ARRAY_STORAGE: constant� XE "Constant" � ARRAY_STORAGE_METHOD := �				FIRST_INDEX_FIRST; ��type BIT_ORDER is (HIGH_ORDER_FIRST,	-- big-endian representation�		LOW_ORDER_FIRST);	-- little-endian representation�OCTET_STORAGE: constant BIT_ORDER := HIGH_ORDER_FIRST; ��type LOCATION_OF_SUBFIELD is	-- subfields composing an integer or the �record						-- exponent/mantissa of a real.�	BEGINNING_AT_BIT_NUMBER: NATURAL_NUMBER;�	ENDING_AT_BIT_NUMBER: NATURAL_NUMBER;�end record;��MAXIMUM_NUMBER_OF_SUBFIELDS: constant := 255;�type SUBFIELD_NUMBER is range�	1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;��type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>) �	of LOCATION_OF_SUBFIELD;��type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE, �	ONES_COMPLEMENT, TWOS_COMPLEMENT);��type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000); ��type INTEGER_PHYSICAL_DESCRIPTION (�	number_of_subfields: SUBFIELD_NUMBER := 1) is record�	COMPLEMENT: SIGN_CONVENTION;�	LOCATION: LOCATION_OF_FIELD (1 .. number_of_subfields);�end record;���type REAL_PHYSICAL_DESCRIPTION(�	number_of_subfields_in_exponent: SUBFIELD_NUMBER := 1;�	number_of_subfields_in_mantissa: SUBFIELD_NUMBER := 1) �is record�	CONVENTION_USED: LIST_OF_RECOGNIZED_CONVENTIONS;�	SIGN_BIT_NUMBER: NATURAL_NUMBER;�	COMPLEMENT: SIGN_CONVENTION;�	EXPONENT_BASE: NATURAL_NUMBER;�	BIAS: NATURAL_NUMBER;�	LOCATION_OF_EXPONENT: LOCATION_OF_FIELD (�		1 .. number_of_subfields_in_exponent);�	LOCATION_OF_MANTISSA: LOCATION_OF_FIELD (�		1 .. number_of_subfields_in_mantissa);�end record;��type STRING_LIST is array(NATURAL_NUMBER range <>, �		NATURAL_NUMBER range <>) of CHARACTER;�type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION (�	NUMBER_OF_OCCURRENCES: NATURAL_NUMBER := 0;�	NUMBER_OF_CHARACTERS: NATURAL_NUMBER := 0) is record�	REPRESENTATION: STRING_LIST (1 .. NUMBER_OF_OCCURRENCES, �					1 .. NUMBER_OF_CHARACTERS);�end record;��type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record�	NUMBER_OF_CHARACTERS: NATURAL_NUMBER;�end record; ��Binary_Representation_01:	constant INTEGER_PHYSICAL_DESCRIPTION := �		(number_of_subfields => 1 ,�		COMPLEMENT => TWOS_COMPLEMENT,�		LOCATION => (1 => (0,15)));� Binary_Representation_02:	constant REAL_PHYSICAL_DESCRIPTION :=�		(number_of_subfields_in_exponent => 1, �		number_of_subfields_in_mantissa => 1, �		CONVENTION_USED => FCSTC000, �		SIGN_BIT_NUMBER => 0, �		COMPLEMENT => SIGN_AND_MAGNITUDE, �		EXPONENT_BASE => 2, �		BIAS => 127, �		LOCATION_OF_EXPONENT => (1 => (1,8), �		LOCATION_OF_MANTISSA => (1 => (9,31)));�ASCII_Rep_01: constant ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_OCCURRENCES => 2, NUMBER_OF_CHARACTERS => 7,�	REPRESENTATION => (“WORKING” , “IDLE”));�ASCII_Rep_02: constant ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_CHARACTERS => 5);��type BASIC_TYPE_NAMES is (USER_TYPE_xxx , USER_TYPE_yyy , �			USER_TYPE_zzz , USER_TYPE_ttt);��type RELATION(choice: BASIC_TYPE_NAMES) is record�	case choice is�		when USER_TYPE_xxx =>�		PHYS_xxx: INTEGER_PHYSICAL_DESCRIPTION �			:= Binary_Representation_01;�		when USER_TYPE_yyy =>�		PHYS_yyy: REAL_PHYSICAL_DESCRIPTION �			:= Binary_Representation_02;�		when USER_TYPE_zzz =>�		PHYS_zzz: ASCII_ENUMERATION_PHYSICAL_DESCRIPTION�			:= ASCII_Rep_01;�		PHYS_ttt: ASCII_NUMERIC_PHYSICAL_DESCRIPTION�			:= ASCII_Rep_02;�	end case;�end record;�end physical_package� XE "Package" �_name;

Most of the declarations are optional. Indeed only the types that are used must be declared. As an example, the type REAL_PHYSICAL_DESCRIPTION must be defined only if it is used in the physical part, i.e., if at least one real type is defined in the logical part.

The following rules apply:

1	The array storage is optional (ARRAY_STORAGE_METHOD type and ARRAY_STORAGE constant� XE "Constant" �) if there is no multi-dimensional array in the logical part, or if the method is FIRST_INDEX_FIRST (default value).

2	The octet storage is optional (BIT_ORDER type and OCTET_STORAGE constant� XE "Constant" �) if the method is HIGH_ORDER_FIRST (default value).

3	The type REAL_PHYSICAL_DESCRIPTION is optional if there is no binary representation for real type to provide, i.e., if there is no binary real type in the logical part.

4	The type INTEGER_PHYSICAL_DESCRIPTION is optional if there is no binary representation for integer type� XE "Integer type" � to provide, i.e., if there is no binary integer type in the logical part or if they are all considered to be unsigned integers or two’s-complement signed integers.

5	The type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION is optional if there is no ASCII rep� XE "ASCII Representation" �resentation for enumeration type to provide, i.e., if there is no ASCII enumeration type in the logical part.

6	The type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is optional if there is no ASCII rep� XE "ASCII Representation" �resentation for integer or real type to provide, i.e., if there is no ASCII integer type� XE "Integer type" � and no ASCII real type in the logical part.

7	The types BASIC_TYPE_NAMES and RELATION are optional if there is no representation to provide.

��SEQ chapitre \h�RESERVED KEYWORDS

The following reserved keywords are not available for use as declared identifiers. Some of them are reserved keywords of the Ada programming language (see reference � REF Ref_Ada * MERGEFORMAT �[E3]�), but not of the EAST language. These words are also reserved in order to avoid any problem in the case of an Ada application accessing the data. Other words are reserved identifiers of the EAST language and not of the Ada programming language.

a)	EAST and Ada Keywords

	array�	digits�	is�	package�	type��	at�������	end�	null�	range�	use��	case���	record���	constant�	for�	of��	when����	others�	subtype���

b)	Other Ada Keywords

	abort�	delta�	if�	pragma�	tagged��	abs�	do�	in�	private�	task��	abstract���	procedure�	terminate��	accept�	else�	limited�	protected�	then��	access�	elsif�	loop����	aliased�	entry��	raise�	until��	all�	exception�	mod�	rem���	and�	exit��	renames�	while����	new�	requeue�	with��	begin�	function�	not�	return���	body���	reverse�	xor���	generic�	or����	declare�	goto�	out�	select���	delay���	separate���

c)	Pure EAST reserved identifiers

	virtual� XE "Virtual discriminant" �_...�	word_32_bits� XE "WORD_32_BITS" ��	word_16_bits� XE "WORD_16_BITS" �����

NOTE	�SYMBOL 45 \f "Symbol"�	Any identifier� XE "Identifier" � beginning with “virtual� XE "Virtual discriminant" �_” is reserved for virtual component identifier only.

��SEQ chapitre \h�CONFORMANCE

Data conforming to a Recommendation may be said to be in conformance at some identified level. Identifying conformance levels provides a standard way to classify the required capabilities of generating and receiving systems.

The Recommendation for Data Description Language EAST Specification recognizes only one conformance level, and that is the entire specification. Therefore recipient systems which are said to be in conformance to this Recommendation shall recognize the entire specification.

�Annex � SEQ Annex* ALPHABETIC * MERGEFORMAT �A���ACRONYMS AND GLOSSARY�TC \f X "ANNEX � SEQ Annex* ALPHABETIC\c * MERGEFORMAT �A�	ACRONYMS AND GLOSSARY"�

(This annex is part of the Recommendation)

This annex defines key acronyms and the glossary of terms which are used throughout this Recommendation to describe the Data Description Language EAST.

A 1	ACRONYMS

ADID		Authority and Description IDentifier�ASCII		American Standard Code for Information Interchange�BNF� XE "BNF" �		Backus-Naur-Form�DDR		Data Description Record�EAST		Enhanced Ada SubseT�ISO		International Standards Organization�LSB		Least Significant Bit�LSO		Least Significant Octet�MSB		Most Significant Bit�MSO		Most Significant Octet

A 2	GLOSSARY OF TERMS

ADID: in the context of EAST, an ADID is an identifier� XE "Identifier" � of the EAST Recommendation within the CCSDS organization. See reference � REF Ref_SFDU_Spec * MERGEFORMAT �

[E2]�.

Array type: � XE "Array type" �an array type is a composite type whose components are all of the same type. Components are selected by indexing.

Based literal� XE "Based literal" �: a based literal is a numeric literal expressed in a form that specifies the base explicitly.

Character literal: � XE "Character literal" �a character literal is formed by enclosing a graphic character between two apostrophe characters.

Character type: � XE "Character type" �a character type is an enumeration type that represents a character set.

Composite type� XE "Composite type" �: a composite type is a collection of components of the same or different types.

Constant� XE "Constant" �: a constant is a keyword that indicates that the identifier� XE "Identifier" � it qualifies has a unique and specified value.

Constrained array: a constrained array is an array with a constant� XE "Constant" � number of elements.

Discrete type� XE "Discrete type" �: a discrete type is either an integer type� XE "Integer type" � or an enumeration type. Discrete types may be used, for example, in case statements and as array indexes.

Discriminant� XE "Discriminant" �: a discriminant is a component of a record type whose value influences the structure of this record.

Elementary type: an elementary type does not have components.

Enumeration representation� XE "Enumeration representation clause" � clause: an enumeration representation clause specifies the bit pattern for each literal of the corresponding enumeration type.

Enumeration type� XE "Enumeration type" �: an enumeration type is defined by the list of its values, called enumeration literals, which may be identifiers or character literals. All values for a given enumeration type are different.

Length clause� XE "Length clause" �: a length clause specifies the amount of storage in bits associated with a type.

Literal: a literal is a value represented by its value itself instead of an identifier� XE "Identifier" �. A literal can be specialized as a numeric literal, an enumeration literal, a character literal, or a string literal.

Marker� XE "Marker" �: a marker is a constant� XE "Constant" � value provided by a data description. This value will be found in the data as an end-delimiter� XE "Delimiter" � of a repetition.

Numeric literal� XE "Numeric literal" �: a numeric literal is the value of a number, expressed by means of characters.

Object� XE "Object" �: an object is either a constant� XE "Constant" � or a variable� XE "Variable" �. An object contains a value.

Predefined type� XE "Predefined type" �: a predefined type is a type provided by EAST, that is, a type that can be used in any EAST description without being previously declared.

Record representation clause� XE "Record representation clause" �: a record representation clause specifies the storage representation of the record type on the medium, that is, the order, position and size of record components (including discriminants, if any).

Record type� XE "Record type" �: a record type is a composite type consisting of zero or more named components, possibly of different types.

Representation clause� XE "Representation clause" �: representation clauses specify the mapping between types of the language and their physical representation.

Scalar type� XE "Scalar type" �: scalar types are discrete types and real types.

String literal: a string literal is formed by a sequence of graphic characters (possibly none) enclosed between two quotation marks used as string brackets.

Subtype� XE "Subtype" �: a subtype is a type together with a constraint, which constrains the values of the type to satisfy a certain condition. The values of a subtype are a subset of the values of its type.

Type: a type is a named set of characteristics. This name can be used to define sets of values.

Unconstrained array: an unconstrained array is an array with a variable� XE "Variable" � number of elements.

Variable� XE "Variable" �: a variable is an identifier� XE "Identifier" � that represents a data item occurrence.

Variant� XE "Variant" � part: a variant part of a record specifies alternative record components, dependent on the discriminant� XE "Discriminant" � of the record. Each value of the discriminant establishes a particular alternative of the variant part.

Virtual� XE "Virtual discriminant" � Discriminant� XE "Discriminant" �: a virtual discriminant is a discriminant that is not included in the composite type that it discriminates.

�Annex � SEQ Annex* ALPHABETIC * MERGEFORMAT �B���CHARACTER DEFINITION�TC \f X "ANNEX � SEQ Annex* ALPHABETIC\c * MERGEFORMAT �B�	CHARACTER DEFINITION"�

(This annex is part of the Recommendation)

This annex contains the definition of the character set used for the EAST predefined type CHARACTER.

This character set is a subset of the 16-bit Basic Multilingual Plane (BMP) of the ISO 10646 coded character set (reference � REF Ref_UCS * MERGEFORMAT �[2]�). This subset is defined as the first 256 characters (row00) of the BMP, which corresponds to the ISO 8859-1, which is an 8-bit single-byte coded graphic character set, also known as “Latin Alphabet No. 1” (reference � REF Ref_Latin_1 * MERGEFORMAT �[1]�). The corresponding codes are shown in the following tables. (The code for each character (Char) is given in decimal (Dec), and hexadecimal (Hex).)

The whole of the ISO 8859-1 character set shown in the following tables is permitted in the data that conforms to this Recommendation, although for interpretation purposes the characters shaded in the following tables are ignored and should not be displayed or printed.

The use of an ISO 8859-1 encoding to represent the natural language also permits the incorporation of tables and figures that can be drawn with the characters listed below. For these figures or tables to be presented identically to any receiver, the interpretation of the control characters (Vertical Tab, Horizontal Tab, Form Feed, Line Feed (also known as New Line) and Carriage Return) must be standardized. The following rules apply:

a)	A new line (positioning the next displayable character to the leftmost displayable position and one line down) for presentation purposes is understood to occur upon encountering the following conditions:

1)	a Carriage Return, when it is not followed by a Line Feed;

2)	a Carriage Return/Line Feed pair, regardless of what follows;

3)	a Line Feed, when it is not followed by a Carriage Return;

4)	a Line Feed/Carriage Return pair, regardless of what follows.

b)	A Horizontal Tab character positions the next displayable character onto the next character position that is a multiple of 8 (i.e., character positions 8, 16, 24, 32 etc., where the leftmost displayable character position is 0).

c)	A Form Feed character positions the next displayable character to the leftmost displayable position and down to the beginning of the next page. The definition of a page is as defined by the local device (e.g., a new screen for a visual display unit (VDU) or a new piece of paper for a printer).

d)	If the characteristics of the display device conflict with those of the data, for example, line lengths may be greater than those permitted by the device, then some adjustment to the layout of the data, as determined by the device, will occur. (Note also that some devices may process or react to codes which this Recommendation specifies as being ignored for presentation purposes.)

NOTE	�SYMBOL 45 \f "Symbol"�	If the alignment of the displayed characters is significant to the understanding of the information, then a fixed space font should be used for presentation.

Some of the defined characters need some explanations: Space (SP), No_Break_Space (NBSP), Soft_Hyphen (SHY) and Res.

a)	A space might be interpreted as a graphic character, or a control character or both. As a graphic character, its representation consists of no symbol, but it takes up display space.

b)	A No_Break_Space is a graphic character for which the representation consists of no symbol. It shall be used when no break (new line) is allowed.

c)	A Soft_Hyphen is a graphic character with the following representation: “-”. It occurs when a word is broken up because of a new line.

d)	Res represents a reserved control character. It is anyway ignored in EAST.

The language identified by the ADID = CCSD0010 is EAST. The character set to be used in EAST descriptions is a subset of the ISO 8859-1 (reference � REF Ref_Latin_1 * MERGEFORMAT �[1]�). This subset is defined as the first 128 characters of the 8-bit single byte coded graphic character set (from the decimal code 0 up to the decimal code 127 in the following tables).

NOTE	�SYMBOL 45 \f "Symbol"�	The character set used in EAST descriptions should not be confused with the character set of the predefined type CHARACTER that describes occurrences of data.

�

Char�Dec�Hex��Char�Dec�Hex��Char�Dec�Hex��Char�Dec�Hex��NUL�0�00��space�32�20��@�64�40��`�96�60��SOH�1�01��!�33�21��A�65�41��a�97�61��STX�2�02��“�34�22��B�66�42��b�98�62��ETX�3�03��#�35�23��C�67�43��c�99�63��EOT�4�04��$�36�24��D�68�44��d�100�64��ENQ�5�05��%�37�25��E�69�45��e�101�65��ACK�6�06��&�38�26��F�70�46��f�102�66��BEL�7�07��‘�39�27��G�71�47��g�103�67��BS�8�08��(�40�28��H�72�48��h�104�68��HT�9�09��)�41�29��I�73�49��i�105�69��LF�10�0A��*�42�2A��J�74�4A��j�106�6A��VT�11�0B��+�43�2B��K�75�4B��k�107�6B��FF�12�0C��,�44�2C��L�76�4C��l�108�6C��CR�13�0D��-�45�2D��M�77�4D��m�109�6D��SO�14�0E��.�46�2E��N�78�4E��n�110�6E��SI�15�0F��/�47�2F��O�79�4F��o�111�6F��DLE�16�10��0�48�30��P�80�50��p�112�70��DC1�17�11��1�49�31��Q�81�51��q�113�71��DC2�18�12��2�50�32��R�82�52��r�114�72��DC3�19�13��3�51�33��S�83�53��s�115�73��DC4�20�14��4�52�34��T�84�54��t�116�74��NAK�21�15��5�53�35��U�85�55��u�117�75��SYN�22�16��6�54�36��V�86�56��v�118�76��ETB�23�17��7�55�37��W�87�57��w�119�77��CAN�24�18��8�56�38��X�88�58��x�120�78��EM�25�19��9�57�39��Y�89�59��y�121�79��SUB�26�1A��:�58�3A��Z�90�5A��z�122�7A��ESC�27�1B��;�59�3B��[�91�5B��{�123�7B��FS�28�1C��<�60�3C��\�92�5C��|�124�7C��GS�29�1D��=�61�3D��]�93�5D��}�125�7D��RS�30�1E��>�62�3E��^�94�5E��~�126�7E��US�31�1F��?�63�3F��_�95�5F��DEL�127�7F��

�

Char�Dec�Hex��Char�Dec�Hex��Char�Dec�Hex��Char�Dec�Hex��Res�128�80��nbsp�160�A0��À�192�C0��à�224�E0��Res�129�81��¡�161�A1��Á�193�C1��á�225�E1��Res�130�82��¢�162�A2��Â�194�C2��â�226�E2��Res�131�83��£�163�A3��Ã�195�C3��ã�227�E3��IND�132�84��¤�164�A4��Ä�196�C4��ä�228�E4��NEL�133�85��¥�165�A5��Å�197�C5��å�229�E5��SSA�134�86��|�166�A6��Æ�198�C6��æ�230�E6��ESA�135�87��§�167�A7��Ç�199�C7��ç�231�E7��HTS�136�88��¨�168�A8��È�200�C8��è�232�E8��HTJ�137�89��©�169�A9��É�201�C9��é�233�E9��VTS�138�8A��ª�170�AA��Ê�202�CA��ê�234�EA��PLD�139�8B��«�171�AB��Ë�203�CB��ë�235�EB��PLU�140�8C���SYMBOL 216 \f "Symbol"��172�AC��Ì�204�CC��ì�236�EC��RI�141�8D��shy�173�AD��Í�205�CD��í�237�ED��SS2�142�8E��®�174�AE��Î�206�CE��î�238�EE��SS3�143�8F��¯�175�AF��Ï�207�CF��ï�239�EF��DCS�144�90��°�176�B0��Ð�208�D0��ð�240�F0��PU1�145�91��±�177�B1��Ñ�209�D1��ñ�241�F1��PU2�146�92��²�178�B2��Ò�210�D2��ò�242�F2��STS�147�93��³�179�B3��Ó�211�D3��ó�243�F3��CCH�148�94��´�180�B4��Ô�212�D4��ô�244�F4��MW�149�95���SYMBOL 109 \f "Symbol"��181�B5��Õ�213�D5��õ�245�F5��SPA�150�96��¶�182�B6��Ö�214�D6��ö�246�F6��EPA�151�97��·�183�B7���SYMBOL 180 \f "Symbol"��215�D7���SYMBOL 184 \f "Symbol"��247�F7��Res�152�98��¸�184�B8��Ø�216�D8��ø�248�F8��Res�153�99��¹�185�B9��Ù�217�D9��ù�249�F9��Res�154�9A��º�186�BA��Ú�218�DA��ú�250�FA��CSI�155�9B��»�187�BB��Û�219�DB��û�251�FB��ST�156�9C��¼�188�BC��Ü�220�DC��ü�252�FC��OSC�157�9D��½�189�BD��Ý�221�DD��ý�253�FD��PM�158�9E��¾�190�BE��Þ�222�DE��þ�254�FE��APC�159�9F��¿�191�BF��ß�223�DF��ÿ�255�FF��

The following tables assign a name (according to the ISO standard) to each printable character of the set.

Hex�Name��Hex�Name��09�Horizontal Tab��3D�Equals Sign��0A�Line Feed��3E�Greater Than Sign��0C�Form Feed��3F�Question Mark��0D�Carriage Return��40�Commercial AT��20�Space��41�Capital Letter A��21�Exclamation Mark��42�Capital Letter B��22�Quotation Mark��43�Capital Letter C��23�Number Sign��44�Capital Letter D��24�Dollar Sign��45�Capital Letter E��25�Percent Sign��46�Capital Letter F��26�Ampersand��47�Capital Letter G��27�Apostrophe��48�Capital Letter H��28�Left Parenthesis��49�Capital Letter I��29�Right Parenthesis��4A�Capital Letter J��2A�Asterisk��4B�Capital Letter K��2B�Plus Sign��4C�Capital Letter L��2C�Comma��4D�Capital Letter M��2D�Hyphen, Minus Sign��4E�Capital Letter N��2E�Full Stop��4F�Capital Letter O��2F�Solidus��50�Capital Letter P��30�Digit Zero��51�Capital Letter Q��31�Digit One��52�Capital Letter R��32�Digit Two��53�Capital Letter S��33�Digit Three��54�Capital Letter T��34�Digit Four��55�Capital Letter U��35�Digit Five��56�Capital Letter V��36�Digit Six��57�Capital Letter W��37�Digit Seven��58�Capital Letter X��38�Digit Eight��59�Capital Letter Y��39�Digit Nine��5A�Capital Letter Z��3A�Colon��5B�Left Square bracket��3B�Semicolon��5C�Reverse Solidus��3C�Less Than Sign��5D�Right Square Bracket���

Hex�Name��Hex�Name��5E�Circumflex Accent��A1�Inverted Exclamation Mark��5F�Low Line��A2�Cent Sign��60�Grave Accent��A3�Pound Sign��61�Small Letter a��A4�Currency Sign��62�Small Letter b��A5�Yen Sign��63�Small Letter c��A6�Broken Bar��64�Small Letter d��A7�Paragraph Sign, Section Sign��65�Small Letter e��A8�Diaeresis��66�Small Letter f��A9�Copyright Sign��67�Small Letter g��AA�Feminine Ordinal Indicator��68�Small Letter h��AB�Left Angle Quotation Mark��69�Small Letter i��AC�Not Sign��6A�Small Letter j��AD�Soft Hyphen��6B�Small Letter k��AE�Registered Trade Mark Sign��6C�Small Letter l��AF�Macron��6D�Small Letter m��B0�Ring Above, Degree Sign��6E�Small Letter n��B1�Plus-Minus Sign��6F�Small Letter o��B2�Superscript Two��70�Small Letter p��B3�Superscript Three��71�Small Letter q��B4�Acute Accent��72�Small Letter r��B5�Micro Sign��73�Small Letter s��B6�Pilcrow Sign��74�Small Letter t��B7�Middle Dot��75�Small Letter u��B8�Cedilla��76�Small Letter v��B9�Superscript One��77�Small Letter w��BA�Masculine Ordinal Indicator��78�Small Letter x��BB�Right Angle Quotation Mark��79�Small Letter y��BC�Vulgar Fraction One Quarter��7A�Small Letter z��BD�Vulgar Fraction One Half��7B�Left Curly Bracket��BE�Vulgar Fraction Three Quarters��7C�Vertical Line��BF�Inverted Question Mark��7D�Right Curly Bracket��C0�Capital Latter A with Grave��7E�Tilde��C1�Capital Letter A with Acute Accent��A0�No-Break Space��C2�Capital Letter A with Circumflex��

Hex�Name��Hex�Name��C3�Capital Letter A with Tilde��E2�Small Letter a with Circumflex��C4�Capital Letter A with Diaeresis��E3�Small Letter a with Tilde��C5�Capital Letter A with Ring Above��E4�Small Letter a with Diaeresis��C6�Capital Diphthong A with E��E5�Small Letter a with Ring Above��C7�Capital Letter C with Cedilla��E6�Small Diphthong a with e��C8�Capital Letter E with Grave Accent��E7�Small Letter c with Cedilla��C9�Capital Letter E with Acute Accent��E8�Small Letter e with Grave Accent��CA�Capital Letter E with Circumflex��E9�Small Letter e with Acute Accent��CB�Capital Letter E with Diaeresis��EA�Small Letter e with Circumflex��CC�Capital Letter I with Grave Accent��EB�Small Letter e with Diaeresis��CD�Capital Letter I with Acute Accent��EC�Small Letter i with Grave Accent��CE�Capital Letter I with Circumflex��ED�Small Letter i with Acute Accent��CF�Capital Letter I with Diaeresis��EE�Small Letter i with Circumflex��D0�Capital Icelandic Letter ETH��EF�Small Letter i with Diaeresis��D1�Capital Letter N with Tilde��F0�Small Icelandic Letter ETH��D2�Capital Letter O with Grave Accent��F1�Small Letter n with Tilde��D3�Capital Letter O with Acute Accent��F2�Small Letter o with Grave Accent��D4�Capital Letter O with Circumflex��F3�Small Letter o with Acute Accent��D5�Capital Letter O with Tilde��F4�Small Letter o with Circumflex��D6�Capital Letter O with Diaeresis��F5�Small Letter o with Tilde��D7�Multiplication Sign��F6�Small Letter o with Diaeresis��D8�Capital Letter O with Oblique��F7�Division Sign ��D9�Capital Letter U with Grave Accent��F8�Small Letter o with Oblique Stroke��DA�Capital Letter U with Acute Accent��F9�Small Letter u with Grave Accent��DB�Capital Letter U with Circumflex��FA�Small Letter u with Acute Accent��DC�Capital Letter U with Diaeresis��FB�Small Letter u with Circumflex��DD�Capital Letter Y with Acute Accent��FC�Small Letter u with Diaeresis��DE�Capital Icelandic Letter THORN��FD�Small Letter y with Acute Accent��DF�Small German Letter Sharp s��FE�Small Icelandic Letter THORN��E0�Small Letter a with Grave Accent��FF�Small Letter y with Diaeresis��E1�Small Letter a with Acute Accent�����

�The following tables assign an identifier� XE "Identifier" � to each character of the set. These identifiers are the constant� XE "Constant" � names of each character.

Hex�Constant� XE "Constant" � Name��Hex�Constant� XE "Constant" � Name��00�NUL��20�Space��01�SOH��21�Exclamation��02�STX��22�Quotation��03�ETX��23�Number_Sign��04�EOT��24�Dollar_Sign��05�ENQ��25�Percent_Sign��06�ACK��26�Ampersand��07�BEL��27�Apostrophe��08�BS��28�Left_Parenthesis��09�HT��29�Right_Parenthesis��0A�LF��2A�Asterisk��0B�VT��2B�Plus_Sign��0C�FF��2C�Comma��0D�CR��2D�Hyphen or Minus_Sign��0E�SO��2E�Full_Stop��0F�SI��2F�Solidus��10�DLE��30�Digit_Zero��11�DC1��31�Digit_One��12�DC2��32�Digit_Two��13�DC3��33�Digit_Three��14�DC4��34�Digit_Four��15�NAK��35�Digit_Five��16�SYN��36�Digit_Six��17�ETB��37�Digit_Seven��18�CAN��38�Digit_Eight��19�EM��39�Digit_Nine��1A�SUB��3A�Colon��1B�ESC��3B�Semicolon��1C�FS or IS4��3C�Less_Than_Sign��1D�GS or IS3��3D�Equals_Sign��1E�RS or IS2��3E�Greater_Than_Sign��1F�US or IS1��3F�Question��

�

Hex�Constant� XE "Constant" � Name��Hex�Constant� XE "Constant" � Name��40�Commercial_At��60�Grave��41�UC_A��61�LC_A��42�UC_B��62�LC_B��43�UC_C��63�LC_C��44�UC_D��64�LC_D��45�UC_E��65�LC_E��46�UC_F��66�LC_F��47�UC_G��67�LC_G��48�UC_H��68�LC_H��49�UC_I��69�LC_I��4A�UC_J��6A�LC_J��4B�UC_K��6B�LC_K��4C�UC_L��6C�LC_L��4D�UC_M��6D�LC_M��4E�UC_N��6E�LC_N��4F�UC_O��6F�LC_O��50�UC_P��70�LC_P��51�UC_Q��71�LC_Q��52�UC_R��72�LC_R��53�UC_S��73�LC_S��54�UC_T��74�LC_T��55�UC_U��75�LC_U��56�UC_V��76�LC_V��57�UC_W��77�LC_W��58�UC_X��78�LC_X��59�UC_Y��79�LC_Y��5A�UC_Z��7A�LC_Z��5B�Left_Square_Bracket��7B�Left_Curly_Bracket��5C�Reverse_Solidus��7C�Vertical_Line��5D�Right_Square_Bracket��7D�Right_Curly_Bracket��5E�Circumflex��7E�Tilde��5F�Low_Line��7F�DEL���

Hex�Constant� XE "Constant" � Name��Hex�Constant� XE "Constant" � Name��80�Reserved_128��A0�No_Break_Space or NBSP��81�Reserved_129��A1�Inverted_Exclamation��82�BPH��A2�Cent_Sign��83�NBH��A3�Pound_Sign��84�Reserved_132��A4�Currency_Sign��85�NEL��A5�Yen_Sign��86�SSA��A6�Broken_Bar��87�ESA��A7�Section_Sign��88�HTS��A8�Diaeresis��89�HTJ��A9�Copyright_Sign��8A�VTS��AA�Feminine_Ordinal_Indicator��8B�PLD��AB�Left_Angle_Quotation��8C�PLU��AC�Not_Sign��8D�RI��AD�Soft_Hyphen��8E�SS2��AE�Registered_Trade_Mark_Sign��8F�SS3��AF�Macron��90�DCS��B0�Degree_Sign or Ring_Above��91�PU1��B1�Plus_Minus_Sign��92�PU2��B2�Superscript_Two��93�STS��B3�Superscript_Three��94�CCH��B4�Acute��95�MW��B5�Micro_Sign��96�SPA��B6�Pilcrow_Sign or Paragraph_Sign��97�EPA��B7�Middle_Dot��98�Res��B8�Cedilla��99�Res��B9�Superscript_One��9A�Res��BA�Masculine_Ordinal_Indicator��9B�CSI��BB�Right_Angle_Quotation��9C�ST��BC�Fraction_One_Quarter��9D�OSC��BD�Fraction_One_Half��9E�PM��BE�Fraction_Three_Quarters��9F�APC��BF�Inverted_Question���

Hex�Constant� XE "Constant" � Name��Hex�Constant� XE "Constant" � Name��C0�UC_A_Grave��E0�LC_A_Grave��C1�UC_A_Acute��E1�LC_A_Acute��C2�UC_A_Circumflex��E2�LC_A_Circumflex��C3�UC_A_Tilde��E3�LC_A_Tilde��C4�UC_A_Diaeresis��E4�LC_A_Diaeresis��C5�UC_A_Ring��E5�LC_A_Ring��C6�UC_AE_Diphthong��E6�LC_AE_Diphthong��C7�UC_C_Cedilla��E7�LC_C_Cedilla��C8�UC_E_Grave��E8�LC_E_Grave��C9�UC_E_Acute��E9�LC_E_Acute��CA�UC_E_Circumflex��EA�LC_E_Circumflex��CB�UC_E_Diaeresis��EB�LC_E_Diaeresis��CC�UC_I_Grave��EC�LC_I_Grave��CD�UC_I_Acute��ED�LC_I_Acute��CE�UC_I_Circumflex��EE�LC_I_Circumflex��CF�UC_I_Diaeresis��EF�LC_I_Diaeresis��D0�UC_Icelandic_Eth��F0�LC_Icelandic_Eth��D1�UC_N_Tilde��F1�LC_N_Tilde��D2�UC_O_Grave��F2�LC_O_Grave��D3�UC_O_Acute��F3�LC_O_Acute��D4�UC_O_Circumflex��F4�LC_O_Circumflex��D5�UC_O_Tilde��F5�LC_O_Tilde��D6�UC_O_Diaeresis��F6�LC_O_Diaeresis��D7�Multiplication_Sign��F7�Division_Sign��D8�UC_O_Oblique_Stroke��F8�LC_O_Oblique_Stroke��D9�UC_U_Grave��F9�LC_U_Grave��DA�UC_U_Acute��FA�LC_U_Acute��DB�UC_U_Circumflex��FB�LC_U_Circumflex��DC�UC_U_Diaeresis��FC�LC_U_Diaeresis��DD�UC_Y_Acute��FD�LC_Y_Acute��DE�UC_Icelandic_Thorn��FE�LC_Icelandic_Thorn��DF�LC_German_Sharp_S��FF�LC_Y_Diaeresis��

�Annex � SEQ Annex* ALPHABETIC * MERGEFORMAT �C���EAST FORMAL SYNTAX SPECIFICATION�TC \f X "ANNEX � SEQ Annex* ALPHABETIC\c * MERGEFORMAT �C�	EAST FORMAL SYNTAX SPECIFICATION"�

(This annex is not part of the Recommendation)

This annex describes the EAST syntax using a simple version of the Backus-Naur-Form. See below the lexical rules, common to the whole syntax specification:

C 1	COMMON LEXICAL RULES

<underline>	::= _

<digit>	::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<upper_case>	::= A | B |...| Z

<lower_case>	::= a | b |...| z

<letter>	::= <upper_case> | <lower_case>

<letter_or_digit>	::= <letter> | <digit>

<identifier� XE "Identifier" �>	::= <letter> { [<underline>] <letter_or_digit> }

<integer_literal>	::= <digit> { [<underline>] <digit> }

<exponent>	::= E [+ | �] <integer_literal>

<floating_point_literal>	::= <integer_literal>.<integer_literal> [<exponent>]

<identifier� XE "Identifier" �_list>	::= <identifier> { , <identifier> }

<character>	::= nul | ... | 0 | 1 | ... | b | ... | ~ | del

<character_literal>	::= ‘ <character> ’

<based_literal>	::= <base># <based_integer> [. <based_integer>] # [<exponent>]

<base>	::= 2 | 8 | 16

<based_integer>	::= <extended_digit> {[<underline>] <extended_digit>}

<extended_digit>	::= digit | A | B | C | D | E | F | a | b | c | d | e | f

<integer_based_literal>	::= <base># <based_integer> # [<exponent>]

<real_based_literal>	::= ::= <base># <based_integer> . <based_integer> # [<exponent>]

<simple_integer_based_literal >	::= <base># <based_integer> #

�C 2	DECLARATION OF THE LOGICAL DATA DESCRIPTION RECORD

<Logical Description� XE "Logical description" �>	::= package� XE "Package" � <identifier� XE "Identifier" �> is�	 { <constant� XE "Constant" �_declaration> | �	 <type_declaration> | <subtype� XE "Subtype" �_declaration> |�	 <representation_clause> }�	 { <variable� XE "Variable" �_declaration> | <constant_declaration> }�	 end <identifier> ;

C 2.1	Subtype� XE "Subtype" � Declaration

<subtype� XE "Subtype" �_declaration>	::= subtype <subtype_identifier� XE "Identifier" �> is <subtype_indication> ;

<subtype� XE "Subtype" �_indication>	::= <type_mark> [<constraint>]

<type_mark>	::= <predefined_type> | <subtype� XE "Subtype" �_identifier� XE "Identifier" �> |�	 <type_identifier>

C 2.2	Type Declaration

<type_declaration>	::= type <type_identifier� XE "Identifier" �> [<discriminant� XE "Discriminant" �_part>] is�	 <type_definition> ;

<discriminant� XE "Discriminant" �_part>	::= (<discriminant_specification> �	 { ; <discriminant_specification> })

<discriminant� XE "Discriminant" �_specification>::= <identifier� XE "Identifier" �> : <discrete_type_mark> := <discriminant_value>

<discriminant� XE "Discriminant" �_value>	::= <integer_literal> | <enumeration_literal>

<type_definition>	::= <integer_type_definition> | <real_type_definition> |�	 <array_type_definition> | <record_type_definition> |�	 <enumeration_type_definition>

a) constraint declaration

<constraint>	::= <range_constraint> | <floating_point_constraint> |�	 <index� XE "Index" �_constraint>

<range_constraint>	::= range <range>

<range>	::= <integer_bound> .. <integer_bound> ;

<integer_bound>	::= [+ | �] <integer_literal> | <integer_constant� XE "Constant" �_identifier� XE "Identifier" �>

<floating_point_constraint>	::= [digits <positive_integer_literal>]�	 [range <real_bound> .. <real_bound>] ;

<real_bound>	::= [+ | �] <floating_point_literal> | <real_identifier� XE "Identifier" �>

<index� XE "Index" �_constraint>	::= (<discrete_range> {, <discrete_range> })

b) integer type� XE "Integer type" � declaration

<integer_type_definition>	::= <range_constraint>

c) real type declaration

<real_type_definition>	::= <floating_point_constraint>

d) array type declaration

<array_type_definition>	::= <unconstrained_array_definition> |�	 <constrained_array_definition>

<unconstrained_array_definition>	::= array (<index� XE "Index" �_subtype� XE "Subtype" �_definition>�	{, <index_subtype_definition> }) of <type_mark> ;

<constrained_array_definition>	::= array (<discrete_range>�		{, <discrete_range> }) of <type_mark> ;

<index� XE "Index" �_subtype� XE "Subtype" �_definition>	::= <discrete_type_mark> range <>

<discrete_range>	::= <discrete_type_mark> | <constrained_index� XE "Index" �>

<discrete_type_mark>	::= <integer_type_mark> | <enumeration_type_mark>

<constrained_index� XE "Index" �>	::= <index_bound> .. <index_bound>

<index� XE "Index" �_bound>	::= [+|�] <integer_literal> | <integer_constant� XE "Constant" �_identifier� XE "Identifier" �> |�		<enumeration_literal>

e) record type declaration

<record_type_definition>	::= record <component_list> end record ;

<component_list>	::= <component_declaration> { <component_declaration> }|�	 { <component_declaration> } <variant� XE "Variant" �_part> |�	 null ;

<component_declaration> 	::= <identifier� XE "Identifier" �> : <subtype� XE "Subtype" �_indication> ;

<variant� XE "Variant" �_part>	::= case <discriminant� XE "Discriminant" �_identifier� XE "Identifier" �> is�	 <variant> { <variant> }�	 end case ;

<variant� XE "Variant" �>	::= when <choice> { | <choice> } =>�	 <component_list>

<choice>	::= [�] <integer_literal> | <discrete_range> | others |�	 <enumeration_literal_specifiation>

f) enumeration type declaration

<enumeration_type_definition>	::=	(<enumeration_literal> { , <enumeration_literal> })

<enumeration_literal>::= <identifier� XE "Identifier" �> | <character_literal>

g) predefined types

<predefined_type>	::= character | string | EOF

C 2.3	Object� XE "Object" � Declaration

<constant� XE "Constant" �_declaration>	::= <identifier� XE "Identifier" �> : constant [<type_mark>]�	[:= <constant_value>];

<constant� XE "Constant" �_value>	::= <integer_literal> | �	 <floating_point_literal> | �	 <enumeration_literal> |�	 <string_literal> |�	 <static_expression> ;

<static_expression>	::= { (<term>) | <term> }

<term>	::= [unary_operator] <number> [<binary_operator><number>]

<unary_operator>	::= + | -

<binary_operator>	::= + | - | * | / | **

-- See section � REF _Ref348235970 \n �3.2.3.2� of the present Recommendation for further constraints on operators.

<number>	::= <integer_literal> | <floating_point_literal> |�	 <integer_constant� XE "Constant" �_identifier� XE "Identifier" �> | <real_constant_identifier>

<variable� XE "Variable" �_declaration>	::= <identifier� XE "Identifier" �> : <type_mark>;

C 2.4	Representation Clause� XE "Representation clause" �

<representation_clause>	::= <length_clause> |�	 <enumeration_representation_clause> |�	 <record_representation_clause>

a) length clause

<length_clause>::= for <type_identifier� XE "Identifier" �>’size use <integer_literal> ;

b) enumeration representation clause

<enumeration_representation_clause>::= for <enumeration_type_identifier� XE "Identifier" �> use �	<aggregate>;

<aggregate>	::=(<component_association> {, <component_association>})

<component_association>	::= <enumeration_literal> => <bit_pattern>

<bit_pattern>	::= <integer_literal> | <simple_integer_based_literal >

c) record representation clause

<record_representation_clause>	::= for <record_type_identifier� XE "Identifier" �> use�	 	 record�	 	<component_clause> { <component_clause>}�	 	 end record ;

<component_clause>	::= <component_identifier� XE "Identifier" �> at <distance� XE "Distance" �> �	 range <static_range> ;

<distance� XE "Distance" �>	::= <word_number> * word_32_bits� XE "WORD_32_BITS" � |�	 <word_number> * word_16_bits� XE "WORD_16_BITS" � | 0

<word_number>	::= <integer_literal>

�C 3	DECLARATION OF THE PHYSICAL DATA DESCRIPTION RECORD

<Physical Description� XE "Physical description" �>	::= package� XE "Package" � <identifier� XE "Identifier" �> is�	 <declaration_part>�	 end <identifier> ;

<declaration_part>	::= { <constant� XE "Constant" �_declaration> |�	 <type_declaration> | <subtype� XE "Subtype" �_declaration> }

<constant� XE "Constant" �_declaration>	::= <identifier� XE "Identifier" �> : constant <type_mark> := <constant_value> ;

<constant� XE "Constant" �_value>	::= <integer_literal> | <floating_point_literal> | �	 <enumeration_literal> | �	 <array_value> | <record_value>

<record_value>	::= (<record_component_value> { , <record_component_value> })

<record_component_value>	::= <component_identifier� XE "Identifier" �> => <constant� XE "Constant" �_value>

<array_value>	::= (<array_component_value> { , <array_component_value> })

<array_component_value>	::= <integer_literal> => <constant� XE "Constant" �_value>

Other BNF� XE "BNF" � rules needed for the physical data description record, if not defined above in this section, are identical to those specified for the logical data description record.

�Annex � SEQ Annex* ALPHABETIC * MERGEFORMAT �D���MAIN DIFFERENCES BETWEEN ADA AND EAST�TC \f X "ANNEX � SEQ Annex* ALPHABETIC\c * MERGEFORMAT �D�	MAIN DIFFERENCES BETWEEN ADA AND EAST"�

(This annex is not part of the Recommendation)

This annex describes the main differences between EAST and the Ada programming language:

�SYMBOL 45 \f "Symbol"�	the Ada features not retained in EAST;

�SYMBOL 45 \f "Symbol"�	the Ada syntax elements which have another semantic in EAST;

�SYMBOL 45 \f "Symbol"�	the EAST syntax restrictions vs. Ada.

D 1	ADA FEATURES NOT RETAINED IN EAST

No algorithmic features of the Ada programming language have been retained in EAST.

In Ada, a program unit can be a procedure, a function, a package� XE "Package" � or a task. Only packages are allowed in EAST: a package structure is used to implement the logical description part; another package implements the physical description part.

Within the declarative part, some Ada predefined types have been excluded for the data description:

�SYMBOL 45 \f "Symbol"�	The predefined type BOOLEAN, because no enumeration representation clause is provided for this type in the Ada STANDARD package� XE "Package" �. Any bit pattern may therefore be used for the implementation of a Boolean value.

�SYMBOL 45 \f "Symbol"�	The predefined type INTEGER, because its definition depends on the implementation (size, bounds, etc.). For the same reason, other integer type� XE "Integer type" �s such as LONG_INTEGER or SHORT_INTEGER are also forbidden.

�SYMBOL 45 \f "Symbol"�	The subtypes of INTEGER: POSITIVE and NATURAL depend on the definition of INTEGER and so depend on the implementation.

�SYMBOL 45 \f "Symbol"�	The predefined type FLOAT, because its definition depends on the implementation (size, number of digits, etc.). For the same reason, other floating-point types such as LONG_FLOAT or SHORT_FLOAT are also forbidden.

�SYMBOL 45 \f "Symbol"�	The predefined type DURATION and any fixed-point type, because their size depends on the implementation. Consequence: a real type in EAST is always considered to be a floating-point type.

Access types and derived types are not considered to be useful in a Data Description Record.

In the same way, generics have not been retained in EAST.

In Ada, a pragma is used to convey information to Ada compilers. As such, pragma use is not justified in EAST.

D 2	ADA SYNTAX ELEMENTS THAT HAVE A DIFFERENT MEANING IN EAST

A length clause is defined by the following declaration:

		for type_identifier� XE "Identifier" �’size use static_expression ;

In Ada, the value of the expression specifies an upper bound for the number of bits to be allocated to objects of the given type. In EAST, the expression specifies the exact number of bits that any object� XE "Object" � of the given type occupies.

In Ada, a record representation clause specifies the storage representation of records in memory, that is, the order, position, and size of record components in memory of a given machine. In EAST, the record representation clause specifies the actual storage representation on the medium.

D 3	EAST SYNTAX RESTRICTIONS VS. ADA

In Ada, the base for based numeric literals can be any number between 2 and 16. In EAST the base can only be 2, 8 or 16.

In Ada the values specified in a range constraint within an integer or real type definition can be a simple_expression. In EAST the values may only be a numeric literal or an identifier� XE "Identifier" � naming an appropriate numeric constant� XE "Constant" �.

In Ada, a constant� XE "Constant" � declaration allows a list of identifiers. EAST allows only a single identifier� XE "Identifier" �.

�Annex � SEQ Annex* ALPHABETIC * MERGEFORMAT �E���INFORMATIVE REFERENCES�TC \f X "ANNEX � SEQ Annex* ALPHABETIC\c * MERGEFORMAT �E�	INFORMATIVE REFERENCES"�

(This annex is not part of the Recommendation)

Informative references [E2]-[E5] below contain information showing how EAST descriptions can be used in the SFDU standard or presenting the Ada language, which is the basis of this Recommendation.

[E� SEQ Para\r 1 * MERGEFORMAT �1�]	Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS A00.0-Y-7. Yellow Book. Issue 7. Washington, D.C.: CCSDS, November 1996.

[E� SEQ Para * MERGEFORMAT �2�]	Standard Formatted Data Units—Structure and Construction Rules. Recommendation for Space Data System Standards, CCSDS 620.0-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS, May 1992.

[E� SEQ Para * MERGEFORMAT �3�]	Information Technology—Programming Languages—Ada. International Standard, ISO/EIC 8652:1995. Geneva: ISO, 1995.

[E� SEQ Para * MERGEFORMAT �4�]	The Data Description Language EAST—A Tutorial. Report Concerning Space Data System Standards, CCSDS 645.0-G-1. Green Book. Issue 1, May 1997.

[E� SEQ Para * MERGEFORMAT �5�]	The Data Description Language EAST—List of Conventions. Report Concerning Space Data System Standards, CCSDS 646.0-G-1. Green Book. Issue 1, May 1997.

�INDEX�TC \f X "INDEX"�

�� INDEX�Array storage method, 3-41

Array type, 3-11, 3-12, 3-13, 1

ASCII Representation, 3-50, 3-51, 3-53, 3-54, 3-59

Based literal, 3-4, 3-5, 1

Binary Representation, 3-43, 3-48, 3-49, 3-50

BNF, 1-2, 1-4, 1, 6

Character literal, 1

Character type, 1

Comment, 3-1

Composite type, 2-3, 1

Constant, 3-7, 3-9, 3-10, 3-24, 3-25, 3-26, 3-27, 3-28, 3-32, 3-37, 3-38, 3-39, 3-41, 3-43, 3-44, 3-45, 3-48, 3-49, 3-50, 3-52, 3-54, 3-56, 3-58, 1, 2, 8, 9, 10, 11, 2, 3, 4, 6, 2

Constraint array type, 3-13

Decimal literal, 3-2, 3-3, 3-4

Delimiter, 1-3, 1-4, 3-1, 2

Discrete type, 1

Discriminant, 3-16, 3-17, 3-18, 3-19, 3-32, 3-35, 2, 3, 2, 4

Distance, 3-32, 3-38, 3-39, 5

Enumeration constraint, 3-23

Enumeration representation clause, 3-30, 2

Enumeration type, 3-8, 3-9, 3-50, 3-51, 3-52, 2

Identifier, 1-1, 1-3, 3-1, 3-2, 3-7, 3-8, 3-9, 3-10, 3-12, 3-15, 3-18, 3-24, 3-25, 3-26, 3-27, 3-40, 3-44, 3-50, 3-54, 4-1, 1, 2, 3, 8, 1, 2, 3, 4, 5, 6, 2

Index, 2-1, 2-3, 3-11, 3-12, 3-13, 3-15, 3-41, 3-47, 2, 3

Integer constraint, 3-24

Integer type, 2-3, 3-8, 3-9, 3-10, 3-11, 3-13, 3-15, 3-17, 3-18, 3-25, 3-28, 3-33, 3-49, 3-50, 3-54, 3-58, 3-59, 1, 3, 1

Length clause, 3-29, 2

Logical description, 2-2, 3-21, 2

Marker, 3-28, 2

Numeric literal, 2

Numeric type, 2-3

Object, 1-3, 2-2, 2-3, 3-7, 3-26, 3-41, 2, 4, 2

Package, 2-1, 2-2, 3-7, 3-40, 3-56, 3-58, 2, 6, 1

Physical description, 2-2, 3-41, 3-43, 3-45, 3-46, 3-51, 3-52, 3-53, 3-54, 6

Predefined type, 3-8, 2

Real constraint, 3-25

Real type, 3-10, 3-54

Record representation clause, 3-31, 3-32, 3-34, 3-35, 3-36, 3-38, 3-39, 2

Record type, 3-13, 3-14, 3-15, 3-17, 2

Representation clause, 2-3, 3-29, 3-30, 3-31, 3-32, 3-34, 3-35, 3-36, 3-38, 3-39, 2, 5

Scalar type, 3-22, 3-50, 2

Separator, 3-1

Subtype, 2-3, 3-7, 3-23, 3-24, 3-25, 3-26, 3-27, 2, 3, 6

Unconstrained array type, 3-13

Variable, 1-4, 3-7, 3-26, 3-27, 3-28, 3-29, 3-32, 3-33, 3-38, 3-56, 2, 3, 2, 4

Variant, 1-2, 1-4, 3-16, 3-17, 3-32, 3-37, 3-38, 3, 4

Virtual discriminant, 3-18, 3-19, 3-21, 3-32, 4-1, 3

WORD_16_BITS, 3-39, 4-1, 5

WORD_32_BITS, 3-39, 4-1, 5

��

�

CCSDS 644.0 -B-1	Page � PAGE �1�	May 1997

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -B-1	Page � PAGE �ix�	May 1997

CCSDS RECOMMENDATION FOR EAST SPECIFICATION

CCSDS DRAFT RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -W-0.4	�PAGE * ARABIC�1�	March 1995	

CCSDS 644.0 -B-1	Page � PAGE �5-1�	May 1997

CCSDS DRAFT RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -W-0.4	�PAGE * ARABIC�1�	March 1995	

CCSDS DRAFT RECOMMENDATION FOR EAST SPECIFICATION

CCSDS 644.0 -W-0.4	�PAGE * ARABIC�1�	March 1995	

CCSDS 644.0 -B-1	Page � SEQ Annex* ALPHABETIC \c * MERGEFORMAT �E�-� PAGE �1�	May 1997

CCSDS 644.0 -B-1	Page I-� PAGE �1�	May 1997

