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statement of intent

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of member space Agencies.  The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems.  Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommendations and are not considered binding on any Agency.

This Recommendation is issued by, and represents the consensus of, the CCSDS Plenary body.  Agency endorsement of this Recommendation is entirely voluntary.  Endorsement, however, indicates the following understandings:

o
Whenever an Agency establishes a CCSDS-related standard, this standard will be in accord with the relevant Recommendation.  Establishing such a standard does not preclude other provisions which an Agency may develop.

o
Whenever an Agency establishes a CCSDS-related standard, the Agency will provide other CCSDS member Agencies with the following information:

--
The standard itself.

--
The anticipated date of initial operational capability.

--
The anticipated duration of operational service.

o
Specific service arrangements shall be made via memoranda of agreement.  Neither this Recommendation nor any ensuing standard is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this Recommendation will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or, (3) be retired or canceled.

In those instances when a new version of a Recommendation is issued, existing CCSDS-related Agency standards and implementations are not negated or deemed to be non-CCSDS compatible.  It is the responsibility of each Agency to determine when such standards or implementations are to be modified.  Each Agency is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommendation.

FOREWORD

This document is a technical Recommendation for use in developing channel coding systems and has been prepared by the Consultative Committee for Space Data Systems (CCSDS).  The telemetry channel coding concept described herein is the baseline concept for spacecraft-to-ground data communication within missions that are cross-supported between Agencies of the CCSDS.

This Recommendation establishes a common framework and provides a common basis for the coding schemes used on spacecraft telemetry streams.  It allows implementing organizations within each Agency to proceed coherently with the development of compatible derived Standards for the flight and ground systems that are within their cognizance.  Derived Agency Standards may implement only a subset of the optional features allowed by the Recommendation and may incorporate features not addressed by the Recommendation.

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Recommendation is therefore subject to CCSDS document management and change control procedures as defined in reference [D1].  Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/
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1 INTRODUCTION

1.1 PURPOSE

The purpose of this document is to establish a common Recommendation for space telemetry channel coding systems to provide cross-support among missions and facilities of member Agencies of the Consultative Committee for Space Data Systems (CCSDS).  In addition, it provides focusing for the development of multi-mission support capabilities within the respective Agencies to eliminate the need for arbitrary, unique capabilities for each mission.

Telemetry channel coding is a method of processing data being sent from a source to a destination so that distinct messages are created which are easily distinguishable from one another.  This allows reconstruction of the data with low error probability, thus improving the performance of the channel.

1.2 SCOPE

Several space telemetry channel coding schemes are described in this document.  The characteristics of the codes are specified only to the extent necessary to ensure interoperability and cross-support.  The specification does not attempt to quantify the relative coding gain or the merits of each approach discussed, nor the design requirements for encoders or decoders.  Some performance information is included in Reference [D2].

This Recommendation does not require that coding be used on all cross-supported missions.  However, for those planning to use coding, the recommended codes to be used are those described in this document.

The rate 1/2 convolutional code recommended for cross-support is described in Section 2, “Convolutional Coding”.  Depending on performance requirements, this code alone may be satisfactory.

For telecommunication channels which are bandwidth-constrained and cannot tolerate the increase in bandwidth required by the basic convolutional code specified in 2.1, the punctured convolutional code specified in 2.2 has the advantage of smaller bandwidth expansion.  The Reed-Solomon code specified in Section 3 also has the advantage of smaller bandwidth expansion and has the capability to indicate the presence of uncorrectable errors.

Where a greater coding gain is needed than can be provided by the convolutional code or Reed-Solomon code alone, a concatenation of the convolutional code as the inner code with the Reed-Solomon code as the outer code may be used for improved performance.  The turbo codes recommended in Section 4 may be used to obtain even greater coding gain where the environment permits.

The recommended methods for frame (or codeblock) synchronization are described in Section 5.

To improve bit transition density as an aid to bit synchronization, a recommended method of pseudo-randomizing data to be sent over the telemetry channel is described in Section 6.

Annex A provides a discussion of the transformation between the Berlekamp and conventional Reed-Solomon symbol representations; Annex B provides a table showing the expansion of Reed-Solomon coefficients; and Annex C is a glossary of coding terminology used in this document.

1.3 APPLICABILITY

This Recommendation applies to telemetry channel coding applications of space missions anticipating cross-support among CCSDS member Agencies at the coding layer.  In addition, it serves as a guideline for the development of compatible internal Agency Standards in this field, based on good engineering practice.

In addition to being applicable to conventional Packet Telemetry systems [1], the codes in this recommendation are applicable to the forward and return links of Advanced Orbiting Systems (AOS) [2].  For coding purposes, the terms “Transfer Frame” and “Reed-Solomon Codeblock” as used in this recommendation are understood to be equivalent to the AOS terms “Virtual Channel Data Unit” (VCDU), and “Coded Virtual Channel Data Unit” (CVCDU), respectively.

1.4 BIT NUMBERING CONVENTION AND NOMENCLATURE

In this document, the following convention is used to identify each bit in a forward-justified N-bit field.  The first bit in the field to be transmitted (i.e., the most left justified when drawing a figure) is defined to be “Bit 0”; the following bit is defined to be “Bit 1” and so on up to “Bit N-1”, as shown in Figure 1-1.  When the field is used to express a binary value (such as a counter), the Most Significant Bit (MSB) shall be the first transmitted bit of the field, i.e., “Bit 0”.

[image: image3.wmf]
Figure 1-1:  Bit Numbering

In accordance with modern data communications practice, spacecraft data fields are often grouped into 8-bit “words” which conform to the above convention.  Throughout this Recommendation, the following nomenclature is used to describe this grouping:

[image: image4.wmf]
1.5 RATIONALE

The CCSDS believes it is important to document the rationale underlying the standards chosen, so that future evaluations of proposed changes or improvements will not lose sight of previous decisions.  The concept and rationale for Telemetry Channel Coding may be found in Reference [D2].

1.6 REFERENCES

The following documents are referenced in this Recommendation.  At the time of publication, the editions indicated were valid.  All documents are subject to revision, and users of this Recommendation are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below.  The CCSDS Secretariat maintains a register of currently valid CCSDS Recommendations.

[1]
Packet Telemetry.  Recommendation for Space Data System Standards, CCSDS 102.0-B-5.  Blue Book.  Issue 5.  Washington, D.C.: CCSDS, November 2000.
[2]
Advanced Orbiting Systems, Networks and Data Links: Architectural Specification.  Recommendation for Space Data System Standards, CCSDS 701.0-B-3.  Blue Book.  Issue 3.  Washington, D.C.: CCSDS, June 2001.
[3]
Recommendation 2.4.9, “Minimum Modulated Symbol Transition Density on the Space-to-Earth Link” in Radio Frequency and Modulation Systems—Part 1: Earth Stations and Spacecraft.  Recommendations for Space Data System Standards, CCSDS 401.0-B.  Blue Book. Washington, D.C.: CCSDS, June 2001.
2 CONVOLUTIONAL CODING


2.1 BASIC CONVOLUTIONAL CODE 

2.1.1 BASIC CONVOLUTIONAL CODE DESCRIPTION

The basic convolutional code is a rate 1/2, constraint-length 7 transparent code which is well suited for channels with predominantly Gaussian noise. This code is defined in 2.1.2.  When this code is punctured according to 2.2, higher code rates (lower overhead) may be achieved, although with somewhat lower error correcting performance.

The convolutional decoder is a maximum-likelihood (Viterbi) decoder.

NOTES

1
Basic convolutional code, by itself, cannot guarantee sufficient symbol transitions when multiplexing schemes are used, e.g., those implemented in QPSK. Unless sufficient symbol transition density is assured by other means, the Pseudo-randomizer defined in section 6 is required.

2
If the decoder’s correction capability is exceeded, undetected burst errors may appear in the output.  For this reason, when CCSDS Transfer Frames or Virtual Channel Data Units are used, references [1] and [2], respectively, require that a cyclic redundancy check (CRC) be used to validate the frame unless the Reed-Solomon code is used.

It is recommended that soft bit decisions with at least 3-bit quantization be used whenever constraints (such as location of decoder) permit.

2.1.2 BASIC CONVOLUTIONAL CODE SPECIFICATION

This recommendation is a non-systematic code and a specific decoding procedure, with the following characteristics:

(1)
Nomenclature:
Convolutional code with maximum-likelihood
(Viterbi) decoding.

(2)
Code rate:
1/2 bit per symbol.

(3)
Constraint length:
7 bits.


(4)
Connection vectors:
G1 = 1111001 (171 octal); G2 = 1011011 (133 octal).

(5)
Symbol inversion:
On output path of G2.

An encoder block diagram is shown in Figure 2-1.

The output symbol sequence is:  C1(1),  EQ \s\up6(\a\ac(____,C2(1))), C1(2),  EQ \s\up6(\a\ac(____,C2(2))). . . .

[image: image5.wmf]
Figure 2-1:  Convolutional Encoder Block Diagram

2.2 PUNCTURED CONVOLUTIONAL CODES

2.2.1 GENERAL

The code rate (r=1/2), constraint length (k=7) convolutional code can be modified to achieve an increase in bandwidth efficiency.  This modification is achieved by using a puncture pattern P(r).  Puncturing removes some of the symbols before transmission, providing lower overhead and lower bandwidth expansion than the original code, but with slightly reduced error correcting performance.

2.2.2 PUNCTURED CONVOLUTIONAL CODES DESCRIPTION

Puncturing allows a single code rate of either 2/3, 3/4, 5/6 or 7/8 to be selected.  The four different puncturing schemes allow selection of the most appropriate level of error correction and symbol rate for a given service or data rate.  Figure 2-2 depicts the punctured encoding scheme.

NOTE
–
The symbol inverter associated with G2 in the rate 1/2 code (defined in 2.1.2) is omitted here.  If sufficient symbol transition density is not ensured by other means then the Pseudo-randomizer defined in section 6 is required.

[image: image6.wmf]
Figure 2-2:  Punctured Encoder Block Diagram

2.2.3 PUNCTURED CONVOLUTIONAL CODES SPECIFICATION

The punctured convolutional code has the following characteristics:

(1)
Nomenclature:
Punctured convolutional code with
maximum-likelihood (Viterbi) decoding.

(2)
Code rate:
1/2, punctured to 2/3. 3/4, 5/6 or 7/8

(3)
Constraint length:
7 bits

(4)
Connection vectors:
G1 = 1111001 (171 octal); G2 = 1011011 (133 octal)

(5)
Symbol inversion:
None

The puncturing patterns for each of the punctured convolutional code rates are defined by Table 2-1 below.

Table 2-1:  Puncture Code Patterns for Convolutional Code Rates

	Puncturing Pattern
1 = transmitted symbol
0 = non-transmitted symbol
	Code Rate
	Output Sequence

C1(t), C2(t) denote values at bit time t

	C1: 1 0
C2: 1 1
	2/3
	C1(1) C2(1) C2(2) ...

	C1: 1 0 1
C2: 1 1 0
	3/4
	C1(1) C2(1) C2(2) C1(3) ...

	C1: 1 0 1 0 1
C2: 1 1 0 1 0
	5/6
	C1(1) C2(1) C2(2) C1(3) C2(4) C1(5) ...

	C1: 1 0 0 0 1 0 1
C2: 1 1 1 1 0 1 0
	7/8
	C1(1) C2(1) C2(2) C2(3) C2(4) C1(5) C2(6) C1(7) ...


3 REED-SOLOMON CODING

3.1 INTRODUCTION

The Reed-Solomon code defined in this section is a powerful burst error correcting code.  In addition, the code chosen has an extremely low undetected error rate.  This means that the decoder can reliably indicate whether it can make the proper corrections or not.  To achieve this reliability, proper codeblock synchronization is mandatory.


One of two different error-correcting options may be chosen.  For maximum performance (at the expense of accompanying overhead) the E=16 option can correct 16 R-S symbols in error per codeword.  For lower overhead (with reduced performance) the E=8 option can correct 8 R-S symbols per codeword. The two options shall not be mixed in a single telemetry stream.

NOTES

1
The extremely low undetected error rate of this code means that the R-S decoder can, with a high degree of certainty, validate the decoded codeblock and consequently the contained CCSDS Transfer Frame (reference [1]) or Virtual Channel Data Unit (reference [2]).  For this reason, [1] and [2] do not require a Cyclic Redundancy Check when this Reed-Solomon Code is used.

2
The Reed-Solomon coding, by itself, cannot guarantee sufficient channel symbol transitions to keep receiver symbol synchronizers in lock.  Unless sufficient channel symbol transition density is ensured by other means, the Pseudo-randomizer defined in section 6 is required.

The Reed-Solomon code may be used alone, and as such it provides an excellent forward error correction capability in a burst-noise channel.  However, should the Reed-Solomon code alone not provide sufficient coding gain, it may be concatenated with the convolutional code defined in Section 2.  Used this way, the Reed-Solomon code is the outer code, while the convolutional code is the inner code.

3.2 SPECIFICATION

The parameters of the selected Reed-Solomon (R-S) code are as follows:

(1)
J = 8 bits per R-S symbol.


(2)
E = Reed-Solomon error correction capability, in symbols, within an R-S codeword.  E may be selected to be 16 or 8 R-S symbols.

(3)
General characteristics of the Reed-Solomon code:

(a)
J, E, and I (the depth of interleaving) are independent parameters.

(b)
n = 2J–1 = 255 symbols per R-S codeword.

(c)
2E is the number of R-S symbols among n symbols of an R-S codeword representing parity checks.

(d)
k = n–2E is the number of R-S symbols among n R-S symbols of an R-S codeword representing information.

(4)
Field generator polynomial:

F(x) = x8 + x7 + x2 + x + 1


over GF(2).

(5)
Code generator polynomial:

 EQ 

g(x) =  EQ \I\pr(j=128 – E,127 + E, \( x – a11j \)) =  EQ \I\su(i=0,2E, Gixi) 

over GF(28), where F() = 0.


It should be recognized that (11 is a primitive element in GF(28) and that F(x) and g(x) characterize a (255,223) Reed-Solomon code when E = 16 and a (255,239) Reed-Solomon code when E = 8.

(6)
The selected code is a systematic code.  This results in a systematic codeblock.

(7)
Symbol Interleaving:


The allowable values of interleaving depth are I=1, 2, 3, 4, and 5.  I=1 is equivalent to the absence of interleaving.  The interleaving depth shall normally be fixed on a physical channel for a mission.  Symbol interleaving is accomplished in a manner functionally described with the aid of Figure 3-1.  (It should be noted that this functional description does not necessarily correspond to the physical implementation of an encoder.)

[image: image7.wmf]
Figure 3-1:  Functional Representation of R-S Interleaving


Data bits to be encoded into a single Reed-Solomon Codeblock enter at the port labeled “IN”.  Switches S1 and S2 are synchronized together and advance from encoder to encoder in the sequence 1,2, . . ., I, 1,2, . . ., I, . . ., spending one R-S symbol time (8 bits) in each position.



One codeblock will be formed from kI R-S symbols entering “IN”.  In this functional representation, a space of 2EI R-S symbols in duration is required between each entering set of kI R-S information symbols.


Due to the action of S1, each encoder accepts k of these symbols, each symbol spaced I symbols apart (in the original stream).  These k symbols are passed directly to the output of each encoder.  The synchronized action of S2 reassembles the symbols at the port labeled “OUT” in the same way as they entered at “IN”.



Following this, each encoder outputs its 2E check symbols, one symbol at a time, as it is sampled in sequence by S2.


If, for I=5, the original symbol stream is

d EQ \A\vs6(1,1) . . .  d EQ \A\vs6(5,1) d EQ \A\vs6(1,2)  . . .  d EQ \A\al\vs6(5,2)  . . .  d EQ \A\al\vs6(1,k)  . . .  d EQ \A\al\vs6(5,k)     [2E × 5 spaces]

then the output is the same sequence with the [2E ( 5 spaces] filled by the [2E  5] check symbols as shown below:

p EQ \A\vs6(1,1)  . . .  p EQ \A\al\vs6(5,1)  . . .  p EQ \A\al\vs6(1,2E)  . . .  p EQ \A\al\vs6(5,2E) 

where

d  EQ \A\vs6(i,1) d  EQ \A\vs6(i,2)  . . .  d  EQ \A\al\vs6(i,k)   pi,1)  EQ \A\vs6(i,1) 

  
 . . .  p EQ \A\AL\vs6(i,2E) 

is the R-S codeword produced by the ith encoder.  If q virtual fill symbols are used in each codeword, then replace k by (k – q) in the above discussion.


With this method of interleaving, the original kI consecutive information symbols that entered the encoder appear unchanged at the output of the encoder with 2EI R-S check symbols appended.

(8)
Maximum Codeblock Length:


The maximum codeblock length, in R-S symbols, is given by:

Lmax = nI = (2J – 1)I = 255I
(9)
Shortened Codeblock Length:


A shortened codeblock length may be used to accommodate frame lengths smaller than the maximum.  However, since the Reed-Solomon code is a block code, the decoder must always operate on a full block basis.  To achieve a full codeblock, “virtual fill” must be added to make up the difference between the shortened block and the maximum codeblock length.  The characteristics and limitations of virtual fill are covered in paragraph (10).  Since the virtual fill is not transmitted, both encoder and decoder must be set to insert it with the proper length for the encoding and decoding processes to be carried out properly.


When an encoder (initially cleared at the start of a block) receives kI–Q symbols representing information (where Q, representing fill, is a multiple of I, and is less than kI), 2EI check symbols are computed over kI symbols, of which the leading Q symbols are treated as all-zero symbols.  A (nI–Q, kI–Q) shortened codeblock results where the leading Q symbols (all zeros) are neither entered into the encoder nor transmitted.

(10)
Reed-Solomon Codeblock Partitioning and Virtual Fill:


The R-S codeblock is partitioned as shown in Figure 3-2.

[image: image8.wmf]
Figure 3-2:  Reed-Solomon Codeblock Partitioning


The Reed-Solomon Check Symbols consist of the trailing 2EI symbols (2EIJ bits) of the codeblock.  (As an example, when E = 16 and k = 223, for I=5 this is always 1280 bits.)


The Telemetry Transfer Frame is defined by the CCSDS Recommendation for Packet Telemetry (Reference [1]).  When used with R-S coding, it has a maximum length of 8920 bits, not including the 32-bit Attached Sync Marker.


The Attached Sync Marker used with R-S coding or convolutional coding alone is a 32-bit pattern specified in Section 5 as an aid to synchronization.  It precedes the Telemetry Transfer Frame or the Transmitted Codeblock (if R-S coding is used).  Frame synchronizers should, therefore, be set to expect a marker at every Telemetry Transfer Frame + 32 bits or at every Transmitted Codeblock + 32 bits (if R-S coding is used).


The Transmitted Codeblock consists of the Telemetry Transfer Frame (without the 32-bit sync marker) and R-S check symbols.  It is the received data entity physically fed into the R-S decoder.  (As an example, when E = 16 and k = 223, using I=5 and no virtual fill, the length of the transmitted codeblock will be 10,200 bits; if virtual fill is used, it will be incrementally shorter, depending on the amount used.)


The Logical Codeblock is the logical data entity operated upon by the R-S decoder.  It can have a different length than the transmitted codeblock because it accounts for the amount of virtual fill that was introduced.  (As an example, when E = 16 and k = 223, for I=5 the logical codeblock always appears to have exactly 10,200 bits in length.)


Virtual fill is used to logically complete the codeblock and is not transmitted.  If used, virtual fill shall:

(a)
consist of all zeros;

(b)
not be transmitted;

(c)
not change in length during a tracking pass;

(d)
be inserted only at the beginning of the codeblock (i.e., after the attached sync marker but before the beginning of the transmitted codeblock);

(e)
be inserted only in integer multiples of 8I bits.

(11)
Dual basis symbol representation and ordering for transmission:


Each 8-bit Reed-Solomon symbol is an element of the finite field GF(256).  Since GF(256) is a vector space of dimension 8 over the binary field GF(2), the actual 8-bit representation of a symbol is a function of the particular basis that is chosen.


One basis for GF(256) over GF(2) is the set ( 1, 1, 2, . . ., 7).  This means that any element of GF(256) has a representation of the form

u77 + u66 + . . . + u11 + u00

where each ui is either a zero or a one.


Another basis over GF(2) is the set ( 1, (1, (2, . . ., (7) where ( = 117.  To this basis there exists a so-called “dual basis” (l0, l1, . . ., l7).  It has the property that

	Tr(li(j ) =  EQ \B\lc\{(\a\al( , )) 
	1, if i = j

	
	0, otherwise



for each j = 0, 1, . . ., 7.  The function Tr(z), called the “trace”, is defined by

Tr(z) =  EQ \I\su(k=0,7, z2k) 

for each element z of GF(256).  Each Reed-Solomon symbol can also be represented as

z0l0 + z1l1 + . . . + z7l7

where each zi is either a zero or a one.


The representation used in this Recommendation is the dual basis eight-bit string z0, z1, . . ., z7, transmitted in that order (i.e., with z0 first).  The relationship between the two representations is given by the two equations

[z0, . . ., z7] = [u7, . . ., u0]  EQ \b\bc\[(\a(, EQ \a\co8\hs9( 1,1,1,0,1,1,1,1) , EQ \a\co8\hs9( 1,1,1,0,1,1,0,0) , EQ \a\co8\hs9( 1,0,0,0,0,1,1,0) , EQ \a\co8\hs9( 1,1,1,1,1,0,1,0) , EQ \a\co8\hs9( 1,0,0,1,1,0,0,1) , EQ \a\co8\hs9( 1,0,1,0,1,1,1,1) , EQ \a\co8\hs9( 0,1,1,1,1,0,1,1) )) 


and

[u7, . . ., u0] = [z0, . . ., z7]  EQ \b\bc\[(\a(, EQ \a\co8\hs9( 0,1,0,0,0,0,1,0) , EQ \a\co8\hs9( 0,0,1,0,1,1,1,0) , EQ \a\co8\hs9( 1,1,1,1,1,1,0,1) , EQ \a\co8\hs9( 1,1,1,1,0,0,0,0) , EQ \a\co8\hs9( 0,1,1,1,1,0,0,1) , EQ \a\co8\hs9( 1,0,1,0,1,1,0,0) , EQ \a\co8\hs9( 1,1,0,0,1,1,0,0) )) 


Further information relating the dual basis (Berlekamp) and conventional representations is given in Annex B.  Also included is a recommended scheme for permitting the symbols generated in a conventional encoder to be transformed to meet the symbol representation required by this document.

(12)
Synchronization:


Codeblock synchronization of the Reed-Solomon decoder is achieved by synchronization of the Attached Sync Marker associated with each codeblock.  (See Section 5.)

(13)
Ambiguity Resolution:


The ambiguity between true and complemented data must be resolved so that only true data is provided to the Reed-Solomon decoder.  Data in NRZ-L form is normally resolved using the 32-bit Attached Sync Marker, while NRZ-M data is self-resolving.

4 TURBO CODING

4.1 INTRODUCTION

Turbo codes are binary block codes with large code blocks (hundreds or thousands of bits).  They are systematic and inherently non-transparent.
  Phase ambiguities are resolved using frame markers, which are required for Codeblock synchronization.

Turbo codes may be used to obtain even greater coding gain than those provided by concatenated coding systems.  Operational environment and performance of the recommended turbo codes are discussed in Reference [D2].

NOTES

1 Turbo coding, by itself, cannot guarantee sufficient bit transitions to keep receiver symbol synchronizers in lock.  Unless sufficient symbol transition density is ensured by other means (such as data, coding or modulation technique), then the Pseudo-randomizer defined in section 6 is required.

2 While providing outstanding coding gain, turbo codes may still leave some residual errors in the decoded output.  For this reason, when CCSDS Transfer Frames or Virtual Channel Data Units are used, references [1] and [2], respectively, require that a cyclic redundancy check (CRC) be used to validate the frame.

4.2 SPECIFICATION

A turbo encoder is a combination of two simple encoders.  The input is a frame of k information bits.  The two component encoders generate parity symbols from two simple recursive convolutional codes, each with a small number of states.  The information bits are also sent uncoded.  A key feature of turbo codes is an interleaver, which permutes bit-wise the original k information bits before input to the second encoder.

The recommended turbo code is a systematic code with the following specifications:

(1)
Code type:
Systematic parallel concatenated turbo code.

(2)
Number of component codes:
2 (plus an uncoded component to make the

code systematic).

(3)
Type of component codes:
Recursive convolutional codes.

(4)
Number of states of each
convolutional component code:
16.

(5)
Nominal
 Code Rates:
r = 1/2, 1/3, 1/4, or 1/6 (selectable).

(6)
The specified information block lengths k are shown in Table 4-1.  They are chosen for compatibility with the corresponding Reed-Solomon interleaving depths, also shown in Table 4-1.


The corresponding codeblock lengths in bits, n=(k+4)/r, for the specified code rates are shown in Table 4-2.

Table 4-1:  Specified Information Block Lengths

	Information block length k, bits
	Corresponding Reed-Solomon interleaving depth I
	Notes

	1784  (=223  1 octets)
	1
	For very low data rates or low latency

	3568  (=223  2 octets)
	2
	

	7136  (=223  4 octets)
	4
	

	8920  (=223  5 octets)
	5
	

	16384
	Not Applicable
	For highest coding gain


Table 4-2:  Codeblock Lengths for Supported Code Rates (Measured in Bits)

	Information block length k
	Codeblock length n

	
	rate 1/2
	rate 1/3
	rate 1/4
	rate 1/6

	1784
	3576
	5364
	7152
	10728

	3568
	7144
	10716
	14288
	21432

	7136
	14280
	21420
	28560
	42840

	8920
	17848
	26772
	35696
	53544

	16384
	32776
	49164
	65552
	98328


(7)
Turbo Code Permutation:


The interleaver is a fundamental component of the turbo encoding and decoding process.  The interleaver for turbo codes is a fixed bit-by-bit permutation of the entire block of data.  Unlike the symbol-by-symbol rectangular interleaver used with Reed-Solomon codes, the turbo code permutation scrambles individual bits and resembles a randomly selected permutation in its lack of apparent orderliness.


The recommended permutation for each specified block length k is given by a particular reordering of the integers 1, 2, . . ., k as generated by the following algorithm.


First express k as k=k1k2.  The parameters k1 and k2 for the specified block sizes are given in Table 4-3.


Next do the following operations for s=1 to s=k to obtain permutation numbers ((s).  In the equation below, (x( denotes the largest integer less than or equal to x, and pq denotes one of the following eight prime integers:

p1 = 31; p2 = 37; p3 = 43; p4 = 47; p5 = 53; p6 = 59; p7 = 61; p8 = 67
Table 4-3:  Parameters k1 and k2 for Specified Information Block Lengths

	Information block length
	k1
	k2

	1784
	8  
	223

	3568
	8  
	223  2

	7136
	8  
	223  4

	8920
	8  
	223  5

	16384
	(note) 
	(note)

	NOTE
–
These parameters are currently under study and will be incorporated in a later revision.


	m
	=
	(s – 1) mod 2

	i
	=
	 EQ \x\le\bo( )\f(s – 1,2 k2)\x\ri\bo( ) 

	j
	=
	 EQ \x\le\bo( )\f(s – 1, 2 )\x\ri\bo( )  – i k2

	t
	=
	(19i + 1) mod  EQ \f(k1,2) 

	q
	=
	t mod 8 + 1

	c
	=
	(pq j + 21m) mod k2

	((s)
	=
	2(t + c  EQ \f(k1, 2 )  + 1) – m



The interpretation of the permutation numbers is such that the sth bit read out on line “in b” in Figure 4-2 is the (s)th bit of the input information block, as shown in Figure 4-1.

[image: image9.wmf]
Figure 4-1:  Interpretation of Permutation

[image: image10.wmf]
Figure 4-2:  Turbo Encoder Block Diagram

(8)
Backward and Forward Connection Vectors (see Figure 4-2):

(a)
Backward connection vector for both component codes and all code rates:  G0 = 10011.

(b)
Forward connection vector for both component codes and rates 1/2 and 1/3:  G1 = 11011.  Puncturing of every other symbol from each component code is necessary for rate 1/2.  No puncturing is done for rate 1/3.

(c)
Forward connection vectors for rate 1/4:  G2 = 10101, G3 = 11111 (1st component code);  G1 = 11011 (2nd component code).  No puncturing is done for rate 1/4.

(d)
Forward connection vectors for rate 1/6: G1 = 11011, G2 = 10101, G3 = 11111 (1st component code); G1 = 11011, G3 = 11111 (2nd component code). No puncturing is done for rate 1/6.
(9)
Turbo Encoder Block Diagram:


The recommended encoder block diagram is shown in Figure 4-2.  Each input frame of k information bits is held in a frame buffer, and the bits in the buffer are read out in two different orders for the two component encoders.  The first component encoder (a) operates on the bits in unpermuted order (“in a”), while the second component encoder (b) receives the same bits permuted by the interleaver (“in b”).  The read-out addressing for “in a” is a simple counter, while the addressing for “in b” is specified by the turbo code permutation described in item 7 above.


The component encoders are recursive convolutional encoders realized by feedback shift registers as shown in Figure 4-2.  The circuits shown in this figure implement the backward connection vector, G0, and the forward connection vectors, G1, G2, G3, specified in item 8 above.  A key difference between these convolutional component encoders and the standalone convolutional encoder recommended in Section 2-1 is their recursiveness.  In the figure this is indicated by the signal (corresponding to the backward connection vector G0) fed back into the leftmost adder of each component encoder.

(10)
Turbo Codeblock Specification:


Both component encoders in Figure 4-2 are initialized with 0s in all registers, and both are run for a total of k+4 bit times, producing an output Codeblock of (k+4)/r encoded symbols, where r is the nominal code rate.  For the first k bit times, the input switches are in the lower position (as indicated in the figure) to receive input data.  For the final 4 bit times, these switches move to the upper position to receive feedback from the shift registers.  This feedback cancels the same feedback sent (unswitched) to the leftmost adder and causes all four registers to become filled with zeros after the final 4 bit times.  Filling the registers with zeros is called terminating the trellis.  During trellis termination the encoder continues to output nonzero encoded symbols.  In particular, the “systematic uncoded” output (line “out 0a” in the figure) includes an extra 4 bits from the feedback line in addition to the k information bits.

In Figure 4-2, the encoded symbols are multiplexed from top-to-bottom along the output line for the selected code rate to form the Turbo Codeblock.  For the rate 1/3 code, the output sequence is (out 0a, out 1a, out 1b); for rate 1/4, the sequence is (out 0a, out 2a, out 3a, out 1b); for rate 1/6, the sequence is (out 0a, out 1a, out 2a, out 3a, out 1b, out 3b).  These sequences are repeated for (k+4) bit times.  For the rate 1/2 code, the output sequence is (out 0a, out 1a, out 0a, out 1b), repeated (k+4)/2 times.  Note that this pattern implies that out 1b is the first to be punctured, out 1a is the second, and so forth.  The Turbo Codeblocks constructed from these output sequences are depicted in Figure 4-3 for the four nominal code rates.

[image: image11.wmf]
Figure 4-3:  Turbo Codeblocks for Different Code Rates

(11)
Turbo Codeblock Synchronization:


Codeblock synchronization of the turbo decoder is achieved by synchronization of an Attached Sync Marker associated with each Turbo Codeblock.  The Attached Sync Marker (ASM) is a bit pattern specified in Section 5 as an aid to synchronization, and it precedes the Turbo Codeblock.  Frame synchronizers should be set to expect a marker at a recurrence interval equal to the length of the ASM plus that of the Turbo Codeblock.


A diagram of a Turbo Codeblock with Attached Sync Marker is shown in Figure 4-4.  Note that the length of the Turbo Codeblock is inversely proportional to the nominal code rate r.

[image: image12.wmf]
Figure 4-4:  Turbo Codeblock with Attached Sync Marker

5 FRAME SYNCHRONIZATION

5.1 INTRODUCTION

Frame or Codeblock synchronization is necessary for proper decoding of Reed-Solomon Codeblocks and Turbo Codeblocks, and subsequent processing of the Transfer Frames.  Furthermore, it is necessary for synchronization of the pseudo-random generator, if used (see Section 6).  It is also useful in assisting the node synchronization process of the Viterbi decoder for the convolutional code.

5.2 THE ATTACHED SYNC MARKER (ASM)

Synchronization of the Reed-Solomon or Turbo Codeblock (or Transfer Frame, if the telemetry channel is not Reed-Solomon coded or turbo coded) is achieved by using a stream of fixed-length Codeblocks (or Transfer Frames) with an Attached Sync Marker (ASM) between them.  Synchronization is acquired on the receiving end by recognizing the specific bit pattern of the ASM in the telemetry channel data stream; synchronization is then customarily confirmed by making further checks.

5.2.1 ENCODER SIDE

If the telemetry channel is uncoded, Reed-Solomon coded, or turbo coded, the code symbols comprising the ASM are attached directly to the encoder output without being encoded by the Reed-Solomon or turbo code.  If an inner convolutional code is used in conjunction with an outer Reed-Solomon code, the ASM is encoded by the inner code but not by the outer code.

5.2.2 DECODER SIDE

For a concatenated Reed-Solomon and convolutional coding system, the ASM may be acquired either in the channel symbol domain (i.e., before any decoding) or in the domain of bits decoded by the inner code (i.e., the code symbol domain of the Reed-Solomon code).  For a turbo coding system, the ASM must be acquired in the channel symbol domain (i.e., the code symbol domain of the turbo code).

5.3 ASM BIT PATTERNS

The ASM for telemetry data that is not turbo coded shall consist of a 32-bit (4-octet) marker with a pattern shown in Figure 5-1.  The ASM for data that is turbo coded with nominal code rate r = 1/2, 1/3, 1/4, or 1/6 shall consist of a 32/r-bit (4/r-octet) marker with bit patterns shown in Figure 5-2.  The ASM bit patterns are represented in hexadecimal notation as:

	ASM for non-turbo-coded data:
	1ACFFC1D

	ASM for rate-1/2 turbo coded data:
	034776C7272895B0

	ASM for rate-1/3 turbo coded data:
	25D5C0CE8990F6C9461BF79C

	ASM for rate-1/4 turbo coded data:
	034776C7272895B0 FCB88938D8D76A4F

	ASM for rate-1/6 turbo coded data:
	25D5C0CE8990F6C9461BF79C DA2A3F31766F0936B9E40863





Figure 5-1:  ASM Bit Pattern for Non-Turbo-Coded Data


[image: image13.wmf]For rate 1/2 turbo code

                    FIRST TRANSMITTED

                    BIT (Bit 0)

¯

                    0000001101000111011101101100011100100111001010001001010110110000

­

                                                                LAST TRANSMITTED BIT

                                                                            (Bit 63)

For rate 1/3 turbo code

     FIRST TRANSMITTED

     BIT (Bit 0)

¯

     001001011101010111000000110011101000100110010000111101101100100101000110000110111111011110011100

­

                                                                                 LAST TRANSMITTED BIT

                                                                                             (Bit 95)

For rate 1/4 turbo code

                    FIRST TRANSMITTED

                    BIT (Bit 0)

¯

                    0000001101000111011101101100011100100111001010001001010110110000

                    1111110010111000100010010011100011011000110101110110101001001111

­

                                                                LAST TRANSMITTED BIT

                                                                           (Bit 127)

For rate 1/6 turbo code

     FIRST TRANSMITTED

     BIT (Bit 0)

¯

     001001011101010111000000110011101000100110010000111101101100100101000110000110111111011110011100

     110110100010101000111111001100010111011001101111000010010011011010111001111001000000100001100011

­

                                                                                 LAST TRANSMITTED BIT

                                                                                            (Bit 191)


Figure 5-2:  ASM Bit Pattern for Turbo-Coded Data

5.4 LOCATION OF ASM

The ASM is attached to (i.e., shall immediately precede) the Reed-Solomon or Turbo Codeblock, or the Transfer Frame if the telemetry channel is not Reed-Solomon or turbo coded.

The ASM for one Codeblock (or Transfer Frame) shall immediately follow the end of the preceding Codeblock (or Transfer Frame);  i.e., there shall be no intervening bits (data or fill) preceding the ASM.

5.5 RELATIONSHIP OF ASM TO REED-SOLOMON AND TURBO CODEBLOCKS

The ASM is NOT a part of the encoded data space of the Reed-Solomon Codeblock, and it is not presented to the input of the Reed-Solomon encoder or decoder.  This prevents the encoder from routinely regenerating a second, identical marker in the check symbol field under certain repeating data-dependent conditions (e.g., a test pattern of 01010101010 ... among others) which could cause synchronization difficulties at the receiving end.  The relationship among the ASM, Reed-Solomon Codeblock, and Transfer Frame is illustrated in Figure 3-2.

Similarly, the ASM is not presented to the input of the turbo encoder or decoder.  It is directly attached to the Turbo Codeblock, as shown in Figure 4-4.

5.6 ASM FOR EMBEDDED DATA STREAM

A different ASM pattern (see Figure 5-3) may be required where another data stream (e.g., a stream of transfer frames played back from a tape recorder in the forward direction) is inserted into the data field of the Transfer Frame of the main stream appearing on the telemetry channel.  The ASM for the embedded data stream, to differentiate it from the main stream marker, shall consist of a 32-bit (4-octet) marker with a pattern as follows:




Figure 5-3:  Embedded ASM Bit Pattern

This pattern is represented in hexadecimal notation as:

352EF853

6 PSEUDO-RANDOMIZER

6.1 INTRODUCTION

In order to maintain bit (or symbol) synchronization with the received telemetry signal, every ground data capture system requires that the incoming signal have a minimum bit transition density (see reference [3]).

If a sufficient bit transition density is not ensured for the channel by other methods (e.g., by use of certain modulation techniques or one of the recommended convolutional codes) then the Pseudo-Randomizer defined in this section is required.  Its use is optional otherwise.

The presence or absence of Pseudo-Randomization is fixed for a physical channel and is managed (i.e., its presence or absence is not signaled in the telemetry but must be known a priori) by the ground system.

6.2 PSEUDO-RANDOMIZER DESCRIPTION

The method for ensuring sufficient transitions is to exclusive-OR each bit of the Codeblock or Transfer Frame with a standard pseudo-random sequence.

If the Pseudo-Randomizer is used, on the sending end it is applied to the Codeblock or Transfer Frame after turbo encoding or RS encoding (if either is used), but before convolutional encoding (if used).  On the receiving end, it is applied to derandomize the data after convolutional decoding (if used) and codeblock synchronization but before Reed-Solomon decoding or turbo decoding (if either is used).

The configuration at the sending end is shown in Figure 6-1.

[image: image14.wmf]
Figure 6-1:  Pseudo-Randomizer Configuration

6.3 SYNCHRONIZATION AND APPLICATION OF PSEUDO-RANDOMIZER

The Attached Sync Marker (ASM) is already optimally configured for synchronization purposes and it is therefore used for synchronizing the Pseudo-Randomizer.

The pseudo-random sequence is applied starting with the first bit of the Codeblock or Transfer Frame.  On the sending end, the Codeblock or Transfer Frame is randomized by exclusive-ORing the first bit of the Codeblock or Transfer Frame with the first bit of the pseudo-random sequence, followed by the second bit of the Codeblock or Transfer Frame with the second bit of the pseudo-random sequence, and so on.

On the receiving end, the original Codeblock or Transfer Frame is reconstructed using the same pseudo-random sequence.  After locating the ASM in the received data stream, the pseudo-random sequence is exclusive-ORed with the data bits immediately following the ASM.  The pseudo-random sequence is applied by exclusive-ORing the first bit following the ASM with the first bit of the pseudo-random sequence, followed by the second bit of the data stream with the second bit of the pseudo-random sequence, and so on.

The pseudo-random sequence shall NOT be exclusive-ORed with the ASM.

6.4 SEQUENCE SPECIFICATION

The pseudo-random sequence shall be generated using the following polynomial:

h(x) = x8 + x7 + x5 + x3 + 1

This sequence begins at the first bit of the Codeblock or Transfer Frame and repeats after 255 bits, continuing repeatedly until the end of the Codeblock or Transfer Frame.  The sequence generator is initialized to the all-ones state at the start of each Codeblock or Transfer Frame.

The first 40 bits of the pseudo-random sequence from the generator are shown below; the leftmost bit is the first bit of the sequence to be exclusive-ORed with the first bit of the Codeblock or Transfer Frame; the second bit of the sequence is exclusive-ORed with the second bit of the Codeblock or Transfer Frame, and so on.

1111 1111 0100 1000 0000 1110 1100 0000 1001 1010 . . . .

6.5 LOGIC DIAGRAM

Figure 6-2 represents a possible generator for the specified sequence.

[image: image15.wmf]
Figure 6-2:  Pseudo-Randomizer Logic Diagram

ANNEX A 

TRANSFORMATION BETWEEN BERLEKAMP
AND CONVENTIONAL REPRESENTATIONS

(This annex is not part of the Recommendation)

A 1
Purpose

This Annex provides information to assist users of the Reed-Solomon code in this Recommendation to transform between the Berlekamp (dual basis) and Conventional representations.  In addition, it shows where transformations are made to allow a conventional encoder to produce the dual basis representation on which the Recommendation is based.

A 2
Transformation

Referring to Figure A-1, it can be seen that information symbols I entering and check symbols C emanating from the Berlekamp R-S encoder are interpreted as

[z0, z1, ... , z7]

where the components zi are coefficients of li, respectively:

z0l0 + z1l1 + ... + z7l7
Information symbols I' entering and check symbols C' emanating from the conventional R-S encoder are interpreted as

[u7, u6, ... , u0]

where the components uj are coefficients of j, respectively:

u77 + u66 + ... + u0
A pre- and post-transformation is required when employing a conventional R-S encoder.

[image: image16.wmf]
Figure A-1:  Transformational Equivalence


Conventional and Berlekamp types of (255,k) Reed-Solomon encoders are assumed to have the same self-reciprocal generator polynomial whose coefficients appear in paragraph 4.2 (4) and (5).  The representation of symbols associated with the conventional encoder is the polynomials in “” appearing in Table A-1, below.  Corresponding to each polynomial in “” is the representation in the dual basis of symbols associated with the Berlekamp type encoder.

Given

i = u77 + u66 + ... + u0
where 0 ( i < 255 (and * denotes the zero polynomial,  u7, u6, ... = 0, 0, ...), 

the corresponding element is

z  =  z0l0 + z1l1 + ... + z7l7
where

[z0, z1, ..., z7] = [u7, u6, ..., u0] Tl
and

[image: image17.wmf]
Row 1, row 2,  ... ,  and row 8 in  Tl  are representations in the dual basis of 7 (10 ... 0), 6 (010 ... 0), ... , and 0 (00 ... 01), respectively.

The inverse of Tl  is

[image: image18.wmf]
Row 1, row 2, ... , and row 8 in T EQ \S(-1,al)  are polynomials in “” corresponding to l0 (10 ... 0), 
l1 (010 ... 0), ... , and l7 (00, ... 01), respectively.  Thus,

[z0, z1, ... , z7 ] T EQ \S(-1,al)      =  [u7, u6, ... , u0]

Example 1:
Given information symbol I,

[z0, z1, ... , z7] = 10111001

then

[image: image19.wmf]
Note that the arithmetic operations are reduced modulo 2.  Also,

[z0, z1, ... , z7] = 10111001

and

[u7, u6, ... , u0] = 00101010 (213)

are corresponding entries in Table A-1.

Example 2:

Given check symbol C',

[7, 6, ..., 0] = 01011001 (152)

Then,

[image: image20.wmf]
Table A-1:  Equivalence of Representations1  
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	*
	00000000
	00000000
	31
	11001101
	01111010

	0
	00000001
	01111011
	32
	00011101
	10011110

	1
	00000010
	10101111
	33
	00111010
	00111111

	2
	00000100
	10011001
	34
	01110100
	00011100

	3
	00001000
	11111010
	35
	11101000
	01110100

	4
	00010000
	10000110
	36
	01010111
	00100100

	5
	00100000
	11101100
	37
	10101110
	10101101

	6
	01000000
	11101111
	38
	11011011
	11001010

	7
	10000000
	10001101
	39
	00110001
	00010001

	8
	10000111
	11000000
	40
	01100010
	10101100

	9
	10001001
	00001100
	41
	11000100
	11111011

	10
	10010101
	11101001
	42
	00001111
	10110111

	11
	10101101
	01111001
	43
	00011110
	01001010

	12
	11011101
	11111100
	44
	00111100
	00001001

	13
	00111101
	01110010
	45
	01111000
	01111111

	14
	01111010
	11010000
	46
	11110000
	00001000

	15
	11110100
	10010001
	47
	01100111
	01001110

	16
	01101111
	10110100
	48
	11001110
	10101110

	17
	11011110
	00101000
	49
	00011011
	10101000

	18
	00111011
	01000100
	50
	00110110
	01011100

	19
	01110110
	10110011
	51
	01101100
	01100000

	20
	11101100
	11101101
	52
	11011000
	00011110

	21
	01011111
	11011110
	53
	00110111
	00100111

	22
	10111110
	00101011
	54
	01101110
	11001111

	23
	11111011
	00100110
	55
	11011100
	10000111

	24
	01110001
	11111110
	56
	00111111
	11011101

	25
	11100010
	00100001
	57
	01111110
	01001001

	26
	01000011
	00111011
	58
	11111100
	01101011

	27
	10000110
	10111011
	59
	01111111
	00110010

	28
	10001011
	10100011
	60
	11111110
	11000100

	29
	10010001
	01110000
	61
	01111011
	10101011

	30
	10100101
	10000011
	62
	11110110
	00111110
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	63
	01101011
	00101101
	95
	10111010
	10110010

	64
	11010110
	11010010
	96
	11110011
	11011100

	65
	00101011
	11000010
	97
	01100001
	01111000

	66
	01010110
	01011111
	98
	11000010
	11001101

	67
	10101100
	00000010
	99
	00000011
	11010100

	68
	11011111
	01010011
	100
	00000110
	00110110

	69
	00111001
	11101011
	101
	00001100
	01100011

	70
	01110010
	00101010
	102
	00011000
	01111100

	71
	11100100
	00010111
	103
	00110000
	01101010

	72
	01001111
	01011000
	104
	01100000
	00000011

	73
	10011110
	11000111
	105
	11000000
	01100010

	74
	10111011
	11001001
	106
	00000111
	01001101

	75
	11110001
	01110011
	107
	00001110
	11001100

	76
	01100101
	11100001
	108
	00011100
	11100101

	77
	11001010
	00110111
	109
	00111000
	10010000

	78
	00010011
	01010010
	110
	01110000
	10000101

	79
	00100110
	11011010
	111
	11100000
	10001110

	80
	01001100
	10001100
	112
	01000111
	10100010

	81
	10011000
	11110001
	113
	10001110
	01000001

	82
	10110111
	10101010
	114
	10011011
	00100101

	83
	11101001
	00001111
	115
	10110001
	10011100

	84
	01010101
	10001011
	116
	11100101
	01101100

	85
	10101010
	00110100
	117
	01001101
	11110111

	86
	11010011
	00110000
	118
	10011010
	01011110

	87
	00100001
	10010111
	119
	10110011
	00110011

	88
	01000010
	01000000
	120
	11100001
	11110101

	89
	10000100
	00010100
	121
	01000101
	00001101

	90
	10001111
	00111010
	122
	10001010
	11011000

	91
	10011001
	10001010
	123
	10010011
	11011111

	92
	10110101
	00000101
	124
	10100001
	00011010

	93
	11101101
	10010110
	125
	11000101
	10000000

	94
	01011101
	01110001
	126
	00001101
	00011000


Table A-1:  Cont’d
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	127
	00011010
	11010011
	159
	10000101
	01101111

	128
	00110100
	11110011
	160
	10001101
	10010101

	129
	01101000
	11111001
	161
	10011101
	00010011

	130
	11010000
	11100100
	162
	10111101
	11111111

	131
	00100111
	10100001
	163
	11111101
	00010000

	132
	01001110
	00100011
	164
	01111101
	10011101

	133
	10011100
	01101000
	165
	11111010
	01011101

	134
	10111111
	01010000
	166
	01110011
	01010001

	135
	11111001
	10001001
	167
	11100110
	10111000

	136
	01110101
	01100111
	168
	01001011
	11000001

	137
	11101010
	11011011
	169
	10010110
	00111101

	138
	01010011
	10111101
	170
	10101011
	01001111

	139
	10100110
	01010111
	171
	11010001
	10011111

	140
	11001011
	01001100
	172
	00100101
	00001110

	141
	00010001
	11111101
	173
	01001010
	10111010

	142
	00100010
	01000011
	174
	10010100
	10010010

	143
	01000100
	01110110
	175
	10101111
	11010110

	144
	10001000
	01110111
	176
	11011001
	01100101

	145
	10010111
	01000110
	177
	00110101
	10001000

	146
	10101001
	11100000
	178
	01101010
	01010110

	147
	11010101
	00000110
	179
	11010100
	01111101

	148
	00101101
	11110100
	180
	00101111
	01011011

	149
	01011010
	00111100
	181
	01011110
	10100101

	150
	10110100
	01111110
	182
	10111100
	10000100

	151
	11101111
	00111001
	183
	11111111
	10111111

	152
	01011001
	11101000
	184
	01111001
	00000100

	153
	10110010
	01001000
	185
	11110010
	10100111

	154
	11100011
	01011010
	186
	01100011
	11010111

	155
	01000001
	10010100
	187
	11000110
	01010100

	156
	10000010
	00100010
	188
	00001011
	00101110

	157
	10000011
	01011001
	189
	00010110
	10110000

	158
	10000001
	11110110
	190
	00101100
	10001111


Table A-1:  Concluded
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	191
	01011000
	10010011
	223
	01100100
	10011010

	192
	10110000
	11100111
	224
	11001000
	10011000

	193
	11100111
	11000011
	225
	00010111
	11001011

	194
	01001001
	01101110
	226
	00101110
	00100000

	195
	10010010
	10100100
	227
	01011100
	00001010

	196
	10100011
	10110101
	228
	10111000
	00011101

	197
	11000001
	00011001
	229
	11110111
	01000101

	198
	00000101
	11100010
	230
	01101001
	10000010

	199
	00001010
	01010101
	231
	11010010
	01001011

	200
	00010100
	00011111
	232
	00100011
	00111000

	201
	00101000
	00010110
	233
	01000110
	11011001

	202
	01010000
	01101001
	234
	10001100
	11101110

	203
	10100000
	01100001
	235
	10011111
	10111100

	204
	11000111
	00101111
	236
	10111001
	01100110

	205
	00001001
	10000001
	237
	11110101
	11101010

	206
	00010010
	00101001
	238
	01101101
	00011011

	207
	00100100
	01110101
	239
	11011010
	10110001

	208
	01001000
	00010101
	240
	00110011
	10111110

	209
	10010000
	00001011
	241
	01100110
	00110101

	210
	10100111
	00101100
	242
	11001100
	00000001

	211
	11001001
	11100011
	243
	00011111
	00110001

	212
	00010101
	01100100
	244
	00111110
	10100110

	213
	00101010
	10111001
	245
	01111100
	11100110

	214
	01010100
	11110000
	246
	11111000
	11110010

	215
	10101000
	10011011
	247
	01110111
	11001000

	216
	11010111
	10101001
	248
	11101110
	01000010

	217
	00101001
	01101101
	249
	01011011
	01000111

	218
	01010010
	11000110
	250
	10110110
	11010001

	219
	10100100
	11111000
	251
	11101011
	10100000

	220
	11001111
	11010101
	252
	01010001
	00010010

	221
	00011001
	00000111
	253
	10100010
	11001110

	222
	00110010
	11000101
	254
	11000011
	10110110

	
	
	
	
	
	


ANNEX B 

EXPANSION OF REED-SOLOMON COEFFICIENTS

(This annex is not part of the Recommendation.)

Purpose:

While the equations given in the Reed-Solomon Coding Section of this recommendation are fully specifying, this Annex provides additional assistance for those implementing either the E = 16 or the E = 8 code.

For E = 16:

	COEFFICIENTS OF g(x)
	POLYNOMIAL IN (

	
	
	
	
	
	7
	6
	5
	4
	3
	2
	1
	0

	G0
	=
	G32
	=
	0
	0
	0
	0
	0
	0
	0
	0
	1

	G1
	=
	G31
	=
	249
	0
	1
	0
	1
	1
	0
	1
	1

	G2
	=
	G30
	=
	59
	0
	1
	1
	1
	1
	1
	1
	1

	G3
	=
	G29
	=
	66
	0
	1
	0
	1
	0
	1
	1
	0

	G4
	=
	G28
	=
	4
	0
	0
	0
	1
	0
	0
	0
	0

	G5
	=
	G27
	=
	43
	0
	0
	0
	1
	1
	1
	1
	0

	G6
	=
	G26
	=
	126
	0
	0
	0
	0
	1
	1
	0
	1


	G7
	=
	G25
	=
	251
	1
	1
	1
	0
	1
	0
	1
	1

	G8
	=
	G24
	=
	97
	0
	1
	1
	0
	0
	0
	0
	1

	G9
	=
	G23
	=
	30
	1
	0
	1
	0
	0
	1
	0
	1

	G10
	=
	G22
	=
	3
	0
	0
	0
	0
	1
	0
	0
	0

	G11
	=
	G21
	=
	213
	0
	0
	1
	0
	1
	0
	1
	0

	G12
	=
	G20
	=
	50
	0
	0
	1
	1
	0
	1
	1
	0

	G13
	=
	G19
	=
	66
	0
	1
	0
	1
	0
	1
	1
	0

	G14
	=
	G18
	=
	170
	1
	0
	1
	0
	1
	0
	1
	1

	G15
	=
	G17
	=
	5
	0
	0
	1
	0
	0
	0
	0
	0

	
	
	G16
	=
	24
	0
	1
	1
	1
	0
	0
	0
	1


Note that G3 = G29 = G13 = G19
Further information, including encoder block diagrams, is provided by Perlman and Lee in Reference [D3].

For E = 8:

	COEFFICIENTS OF g(x)
	POLYNOMIAL IN (

	
	
	
	
	
	7
	6
	5
	4
	3
	2
	1
	0

	G0
	=
	G16
	=
	0
	
	
	
	
	
	
	
	

	G1
	=
	G15
	=
	30
	
	
	
	
	
	
	
	

	G2
	=
	G14
	=
	230
	
	
	
	
	
	
	
	

	G3
	=
	G13
	=
	49
	
	
	
	
	
	
	
	

	G4
	=
	G12
	=
	235
	
	
	
	
	
	
	
	

	G5
	=
	G11
	=
	129
	
	
	
	
	
	
	
	

	G6
	=
	G10
	=
	81
	
	
	
	
	
	
	
	

	G7
	=
	G9
	=
	76
	
	
	
	
	
	
	
	

	
	
	G8
	=
	173
	
	
	
	
	
	
	
	


ANNEX C 

GLOSSARY OF ACRONYMS AND TERMS

(This annex is not part of the Recommendation.)

C 1
Purpose

This annex defines key acronyms and terms that are used throughout this Recommendation to describe telemetry channel coding.

C 2
Terms

BLOCK ENCODING: A one-to-one transformation of sequences of length k of elements of a source alphabet to sequences of length n of elements of a code alphabet, n>k.

CHANNEL SYMBOL:  The unit of output of the innermost encoder.

CODEBLOCK:  A codeblock of an (n,k) block code is a sequence of n channel symbols which were produced as a unit by encoding a sequence of k information symbols, and will be decoded as a unit.

CODE RATE:  The average ratio of the number of binary digits at the input of an encoder

to the number of binary digits at its output.

CODEWORD:  In a block code, one of the sequences in the range of the one-to-one transformation (see BLOCK ENCODING).

CONCATENATION:  The use of two or more codes to process data sequentially with the output of one encoder used as the input of the next.

CONNECTION VECTOR (FORWARD):  In convolutional and turbo coding, a vector used to specify one of the parity checks to be computed by the shift register(s) in the encoder.  For a shift register with s stages, a connection vector is an s-bit binary number.  A bit equal to “one” in position i (counted from the left) indicates that the output of the ith stage of the shift register is to be used in computing that parity check.

CONNECTION VECTOR (BACKWARD):  In turbo coding, a vector used to specify the feedback to the shift registers in the encoder.  For a shift register with s stages, a backward connection vector is an s-bit binary number. A bit equal to “one” in position i (counted from the left) indicates that the output of the ith stage of the shift register is to be used in computing the feedback value, except for the leftmost bit which is ignored.

CONSTRAINT LENGTH:  In convolutional coding, the number of consecutive input bits that are needed to determine the value of the output symbols at any time.

CONVOLUTIONAL CODE:  As used in this document, a code in which a number of output symbols are produced for each I input information bit.  Each output symbol is a linear combination of the current input bit  as well as some or all of the previous k-1 bits where k is the constraint length of the code.

GF(n):  The Galois Field consisting of exactly “n” elements.

INNER CODE:  In a concatenated coding system, the last encoding algorithm that is applied to the data stream.  The data stream here consists of the codewords generated by the outer decoder.

MODULATING WAVEFORM:  A way of representing data bits (“1” and “0”) by a particular waveform.

NRZ-L:  A modulating waveform in which a data “one” is represented by one of two levels, and a data “zero” is represented by the other level.

NRZ-M:  A modulating waveform in which a data “one” is represented by a change in level and a data “zero” is represented by no change in level.

OUTER CODE:  In a concatenated coding system, the first encoding algorithm that is applied to the data stream. 

PUNCTURED CODE:  As used in this document, a code obtained by deleting some of the parity symbols generated by the convolutional encoder before transmission.  The bandwidth efficiency obtained by puncturing is increased compared to the original code, although the minimum weight (and therefore its error-correcting performance) will be less than that of the original code.

REED-SOLOMON (R-S) SYMBOL:  A set of J bits that represents an  element in GF(2J), the code alphabet of a J-bit Reed-Solomon code.

SYSTEMATIC CODE:  A code in which the input information sequence appears in unaltered form as part of the output codeword.

TRANSPARENT CODE:  A code that has the property that complementing the input of the encoder or decoder results in complementing the output.

TRELLIS TERMINATION:  The operation of filling with zeros the s stages of each shift register used in the turbo encoder, after the end of the information block. During trellis termination the encoders continue to output encoded symbols for s-1 additional clock cycles.

TURBO CODE:  As used in this document, a block code formed by combining two component recursive convolutional codes. A turbo code takes as input a block of k information bits. The input block is sent unchanged to the first component code and bit-wise interleaved (see TURBO CODE PERMUTATION) to the second component code. The output is formed by the parity symbols contributed by each component code plus a replica of the information bits.

TURBO CODE PERMUTATION:  A fixed bit-by-bit permutation of the entire input block of information bits performed by an interleaver, used in turbo codes.

VIRTUAL FILL:  In a systematic block code, a codeword can be divided into an information part and a parity (check) part.  Suppose that the information part is N symbols long (a symbol is defined here to be an element of the code’s alphabet) and that the parity part is M symbols long.  A “shortened” code is created by taking only S (S < N) information symbols as input, appending a fixed string of length N-S and then encoding in the normal way.  This fixed string is called “fill” Since the fill is a predetermined sequence of symbols, it need not be transmitted over the channel.  Instead, the decoder appends the same fill sequence before decoding.  In this case, the fill is called “Virtual Fill”.
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ANNEX E 

COMPATIBLE FRAME
 LENGTHS
FOR CCSDS CODEBLOCKS
(This annex is not part of the Recommendation.)
E1 Purpose

The purpose of this annex is to summarize the length constraints on frames imposed by the use of the Channel Codes specified in this Recommendation.  

NOTES

1 Recommendations [1] and [2] require that any Transfer Frame or VCDU not operating on a channel using the Reed-Solomon Code of Section 4 must include a Cyclic Redundancy Check (CRC) to be included to provide validation.  It follows that a frame on an uncoded channel must also carry the CRC.

2 None of the coding techniques recommended (except for the rate=1/2 convolutional code with the inverter) can by itself guarantee sufficient transitions to keep receiver symbol synchronizers in lock.  Unless the data, coding, or modulation technique chosen can guarantee sufficient transitions, the pseudo-randomizer is required by Section 6 of this recommendation.

E2 Frame Lengths with Convolutional Coding

The Convolutional Codes of Section 2 are not block-oriented codes, so they impose no constraint on the length of the transfer frame or VCDU.  However, other length constraints specified in [1] and [2] must still be observed.


E3 Frame Lengths with Reed-Solomon Coding

E3.1 General

With the Reed-Solomon Codes specified in Section 3, only certain specific lengths of transfer frames may be contained within the codeblock’s data space.  In some cases these lengths may be shortened in discrete steps by using virtual fill at a small sacrifice in coding gain.  Since these R-S codes have a symbol length of 8 bits, the length of the codeblock must be a combined multiple of 8 bits and the interleaving depth.  This will give “octet compatibility”.   If high-speed efficiency is needed for “32-bit compatibility” (with 32-bit processors, for example) then the length of the  codeblock must be a combined multiple of 8 bits, the interleaving depth, and 32 bits.

NOTES

1 The Advanced Orbiting Systems Recommendation [2] specifies  a limited set of  codeblock lengths, and only the E=16 case for the channel code.  It is undergoing revision by the CCSDS to include the E=8 option.

2 In each table below, lengths are given in bits with equivalent octets in (parentheses).

E3.2 Transfer Frames for octet compatibility, E=16

The following are allowed lengths for Transfer Frames when octet compatibility is sufficient and the Reed-Solomon E=16 code is selected.  Maximum lengths are shown;  shorter lengths are permitted in discrete steps using the concept of “Virtual Fill” and shortening the transmitted codeblock length by the steps shown in the last column.

	Reed-Solomon

Interleave

Depth (I)


	Maximum

Transfer Frame

Length
	Maximum Transmitted

Codeblock

Length, E=16
	Transfer Frame (and transmitted codeblock) may be shortened in multiples of



	1
	1784 (223)
	2040 (255)
	8 (1)

	2
	3568 (446)
	4080 (510)
	16 (2)

	3
	5352 (669)
	6120 (765)
	24 (3)

	4
	7136 (892)
	8160 (1020
	32 (4)

	5
	8920 (1115)
	10200 (1275)
	40 (5)


E3.3 Transfer Frames for octet compatibility, E=8

The following are allowed lengths for Transfer Frames when octet compatibility is sufficient and the Reed-Solomon E=8 code is selected.  Maximum lengths are shown;  shorter lengths are permitted in discrete steps using the concept of “Virtual Fill” and shortening the transmitted codeblock length by the steps shown in the last column.

	R-S

Inter-

leave

Depth 

(I)


	Maximum

Transfer Frame

Length
	Maximum Transmitted

Codeblock

Length, E=8
	Transfer Frame (and transmitted codeblock) may be further shortened in multiples of



	1
	1912 (239)
	2040 (255)
	8 (1)

	2
	3824 (478)
	4080 (510)
	16 (2)

	3
	5736 (717)
	6120 (765)
	24 (3)

	4
	7648 (956)
	8160 (1020)
	32 (4)

	5
	9560 (1195)
	10200 (1275)
	40 (5)


E4 Frame Lengths with Turbo Coding

The Turbo Codes specified in Section 4 of this Recommendation are block codes.  Therefore, the frame length must match the information block lengths for the selected turbo code. 

Performance for only the following information block lengths have been validated by CCSDS and approved for use.  These lengths will accommodate both Version 1 Transfer Frames [1] and Version 2 VCDUs [2].  Values are in bits.

1784,
3568,
7136,
8920,
16384

NOTES

1 Frame synchronizers should be set to account for the Attached Sync Marker, whose length must be added to the turbo codeblock length as specified in Table 4-2. The ASM pattern and length depend on the turbo code rate as shown in Figure 4-4. 

2 Recommendations [1] and [2] require that if the Reed-Solomon Code is not used, a Cyclic Redundancy Check (CRC) is required as part of the Transfer Frame or VCDU for validation purposes.







� When suppressed-carrier modulation systems are used, NRZ-M or NRZ-L may be used as a modulating waveform. If the user contemplates conversion of his modulating waveform from NRZ-L to NRZ-M, such conversion should be performed on-board at the input to the convolutional encoder. Correspondingly, the conversion on the ground from NRZ-M to NRZ-L should be performed at the output of the convolutional decoder. This avoids unnecessary link performance loss.





CAUTION	–	When a fixed pattern (the fixed part of the convolutionally encoded Attached Sync Marker) in the symbol stream is used to provide node synchronization for the Viterbi decoder, care must be taken to account for any modification of the pattern due to the modulating waveform conversion.





�	It should be noted that shortening the transmitted codeblock length in this way changes the overall performance to a degree dependent on the amount of virtual fill used. Since it incorporates no virtual fill, the maximum codeblock length allows full performance. In addition, as virtual fill in a codeblock is increased (at a specific bit rate), the number of codeblocks per unit time that the decoder must handle increases. Therefore, care should be taken so that the maximum operating speed of the decoder (codeblocks per unit time) is not exceeded.


�	Implementers should be aware that a wide class of turbo codes is covered by a patent by France Télécom and Télédiffusion de France under US Patent 5,446,747 and its counterparts in other countries.  Potential user agencies should direct their requests for licenses to:





Mr. Christian HAMON


CCETT GIE/CVP


4 rue du Clos Courtel


BP59 


35512 CESSON SEVIGNE Cedex


France


Tel:  +33 2 99 12 48 05


Fax:  +33 2 99 12 40 98


E-mail:  christian.hamon@cnet.francetelecom.fr





�	Differential encoding (i.e., NRZ-M signaling) after the turbo encoder is not recommended since soft decoding would require the use of differential detection with considerable loss of performance. Differential encoding before the turbo encoder cannot be used because the turbo codes recommended in this document are non-transparent. This implies that phase ambiguities have to be detected and resolved by the frame synchronizer.





�	Because of “trellis termination” symbols (see item 10 below), the true code rates (defined as the ratios of the information block lengths to the codeblock lengths in Table � REF T_Codeblock_Lengths_for_Supported_Code_R \h ��4-2� of item 6) are slightly smaller than the nominal code rates. In this recommendation, the terminology “code rate” always refer to the nominal code rates, r = 1/2, 1/3, 1/4, or 1/6.


�


� “Derandomization” consists of either: a) exclusive OR-ing the pseudo-random sequence with the received bits of a transfer frame or a Reed-Solomon codeblock, or b) inverting (or not inverting), according to the pseudo-randomizer bit pattern, the demodulator output of a turbo codeblock.


1	From Table 4 of Reference � REF R_ReedSolomonEncoders \h ��[D3]�. Note: Coefficients of the “Polynomial in Alpha” column are listed in descending powers of , starting with 7. 





�	Frame, as used in this annex, includes the Telemetry “Transfer Frame” as defined in [1] and the AOS “Virtual Channel Data Unit” (VCDU) as defined in [2].


� Interleaver parameters for the length 16384 bits are under study by the CCSDS.  Until finalized, use of this option is not recommended.





_955262816.unknown

_955522954.doc


For rate 1/2 turbo code
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For rate 1/3 turbo code
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For rate 1/4 turbo code
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For rate 1/6 turbo code
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